Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(5): e0267506, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35544450

RESUMEN

BACKGROUND: In COVID-19 patients, lung ultrasound is superior to chest radiograph and has good agreement with computerized tomography to diagnose lung pathologies. Most lung ultrasound protocols published to date are complex and time-consuming. We describe a new illustrative Point-of-care ultrasound Lung Injury Score (PLIS) to help guide the care of patients with COVID-19 and assess if the PLIS would be able to predict COVID-19 patients' clinical course. METHODS: This retrospective study describing the novel PLIS was conducted in a large tertiary-level hospital. COVID-19 patients were included if they required any form of respiratory support and had at least one PLIS study during hospitalization. Data collected included PLIS on admission, demographics, Sequential Organ Failure Assessment (SOFA) scores, and patient outcomes. The primary outcome was the need for intensive care unit (ICU) admission. RESULTS: A total of 109 patients and 293 PLIS studies were included in our analysis. The mean age was 60.9, and overall mortality was 18.3%. Median PLIS score was 5.0 (3.0-6.0) vs. 2.0 (1.0-3.0) in ICU and non-ICU patients respectively (p<0.001). Total PLIS scores were directly associated with SOFA scores (inter-class correlation 0.63, p<0.001), and multivariate analysis showed that every increase in one PLIS point was associated with a higher risk for ICU admission (O.R 2.09, 95% C.I 1.59-2.75) and in-hospital mortality (O.R 1.54, 95% C.I 1.10-2.16). CONCLUSIONS: The PLIS for COVID-19 patients is simple and associated with SOFA score, ICU admission, and in-hospital mortality. Further studies are needed to demonstrate whether the PLIS can improve outcomes and become an integral part of the management of COVID-19 patients.


Asunto(s)
COVID-19 , COVID-19/diagnóstico por imagen , Humanos , Unidades de Cuidados Intensivos , Pulmón/diagnóstico por imagen , Persona de Mediana Edad , Puntuaciones en la Disfunción de Órganos , Sistemas de Atención de Punto , Pronóstico , Estudios Retrospectivos
2.
Neurotoxicology ; 78: 99-105, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32084435

RESUMEN

Organophosphates (OPs) are widely used as pesticides and have been employed as warfare agents. OPs inhibit acetylcholinesterase, leading to over-stimulation of cholinergic synapses and can cause status epilepticus (SE). OPs poisoning can result in irreversible brain damage and death. Despite termination of SE, recurrent seizures and abnormal brain activity remain common sequelae often associated with long-term neural damage and cognitive dysfunction. Therefore, early treatment for prevention of seizures is of high interest. Using a rat model of paraoxon poisoning, we tested the efficacy of different neuroprotective and anti-epileptic drugs (AEDs) in suppressing early seizures and preventing brain damage. Electrocorticographic recordings were performed prior, during and after injection of 4.5 LD50 paraoxon, followed by injections of atropine and toxogonin (obidoxime) to prevent death. Thirty minutes later, rats were injected with midazolam alone or in combination with different AEDs (lorazepam, valproic acid, phenytoin) or neuroprotective drugs (losartan, isoflurane). Outcome measures included SE duration, early seizures frequency and epileptiform activity duration in the first 24 -hs after poisoning. To assess delayed brain damage, we performed T2-weighted magnetic resonance imaging one month after poisoning. SE duration and the number of recurrent seizures were not affected by the addition of any of the drugs tested. Delayed brain injury was most prominent in the septum, striatum, amygdala and piriform network. Only isoflurane anesthesia significantly reduced brain damage. We show that acute treatment with isoflurane, but not AEDs, reduces brain damage following SE. This may offer a new therapeutic approach for exposed individuals.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Encéfalo/efectos de los fármacos , Isoflurano/administración & dosificación , Midazolam/administración & dosificación , Paraoxon/toxicidad , Estado Epiléptico/prevención & control , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología
3.
Sci Transl Med ; 11(521)2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801888

RESUMEN

A growing body of evidence shows that epileptic activity is frequent but often undiagnosed in patients with Alzheimer's disease (AD) and has major therapeutic implications. Here, we analyzed electroencephalogram (EEG) data from patients with AD and found an EEG signature of transient slowing of the cortical network that we termed paroxysmal slow wave events (PSWEs). The occurrence per minute of the PSWEs was correlated with level of cognitive impairment. Interictal (between seizures) PSWEs were also found in patients with epilepsy, localized to cortical regions displaying blood-brain barrier (BBB) dysfunction, and in three rodent models with BBB pathology: aged mice, young 5x familial AD model, and status epilepticus-induced epilepsy in young rats. To investigate the potential causative role of BBB dysfunction in network modifications underlying PSWEs, we infused the serum protein albumin directly into the cerebral ventricles of naïve young rats. Infusion of albumin, but not artificial cerebrospinal fluid control, resulted in high incidence of PSWEs. Our results identify PSWEs as an EEG manifestation of nonconvulsive seizures in patients with AD and suggest BBB pathology as an underlying mechanism and as a promising therapeutic target.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Barrera Hematoencefálica/fisiopatología , Corteza Cerebral/fisiopatología , Electroencefalografía , Epilepsia/fisiopatología , Anciano , Envejecimiento/patología , Animales , Demencia/fisiopatología , Humanos , Masculino , Ratones , Red Nerviosa/fisiopatología , Perfusión , Ratas , Albúmina Sérica/metabolismo
4.
Neurobiol Dis ; 124: 373-378, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30590177

RESUMEN

The lack of early biomarkers of epileptogenesis precludes a sound prediction of epilepsy development after acute brain injuries and of the natural course of the disease thus impairing the development of antiepileptogenic treatments. We investigated whether the dimensional changes of nonlinear dynamics in EEG/ECoG signals, that were recorded in the early aftermath of different epileptogenic injuries, provide a measure to be exploited as a sensitive prognostic and predictive biomarker for epilepsy. Using three different models of epilepsy in two rodent species, we report a common and significant decrease of nonlinear dynamics dimension in EEG/ECoG tracings during early epileptogenesis. In particular, the magnitude of this dimensional decrease predicts the severity of ensuing epilepsy, and this measure is modulated by disease-modifying or antiepileptogenic treatments. The broad application of EEG/ECoG monitoring in epilepsy underlines the translational value of these findings for enriching the population of patients at risk for developing epilepsy in clinical investigations.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/fisiopatología , Animales , Lesiones Encefálicas/complicaciones , Epilepsia/etiología , Ratones , Dinámicas no Lineales , Ratas , Procesamiento de Señales Asistido por Computador
5.
J Neurosci ; 37(17): 4450-4461, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28330876

RESUMEN

Postinjury epilepsy (PIE) is a devastating sequela of various brain insults. While recent studies offer novel insights into the mechanisms underlying epileptogenesis and discover potential preventive treatments, the lack of PIE biomarkers hinders the clinical implementation of such treatments. Here we explored the biomarker potential of different electrographic features in five models of PIE. Electrocorticographic or intrahippocampal recordings of epileptogenesis (from the insult to the first spontaneous seizure) from two laboratories were analyzed in three mouse and two rat PIE models. Time, frequency, and fractal and nonlinear properties of the signals were examined, in addition to the daily rate of epileptiform spikes, the relative power of five frequency bands (theta, alpha, beta, low gamma, and high gamma) and the dynamics of these features over time. During the latent pre-seizure period, epileptiform spikes were more frequent in epileptic compared with nonepileptic rodents; however, this feature showed limited predictive power due to high inter- and intra-animal variability. While nondynamic rhythmic representation failed to predict epilepsy, the dynamics of the theta band were found to predict PIE with a sensitivity and specificity of >90%. Moreover, theta dynamics were found to be inversely correlated with the latency period (and thus predict the onset of seizures) and with the power change of the high-gamma rhythm. In addition, changes in theta band power during epileptogenesis were associated with altered locomotor activity and distorted circadian rhythm. These results suggest that changes in theta band during the epileptogenic period may serve as a diagnostic biomarker for epileptogenesis, able to predict the future onset of spontaneous seizures.SIGNIFICANCE STATEMENT Postinjury epilepsy is an unpreventable and devastating disorder that develops following brain injuries, such as traumatic brain injury and stroke, and is often associated with neuropsychiatric comorbidities. As PIE affects as many as 20% of brain-injured patients, reliable biomarkers are imperative before any preclinical therapeutics can find clinical translation. We demonstrate the capacity to predict the epileptic outcome in five different models of PIE, highlighting theta rhythm dynamics as a promising biomarker for epilepsy. Our findings prompt the exploration of theta dynamics (using repeated electroencephalographic recordings) as an epilepsy biomarker in brain injury patients.


Asunto(s)
Biomarcadores , Electrocorticografía , Epilepsia/fisiopatología , Animales , Lesiones Encefálicas/complicaciones , Ritmo Circadiano , Convulsivantes/administración & dosificación , Epilepsia/inducido químicamente , Hipocampo/fisiopatología , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Actividad Motora , Ratas , Convulsiones/fisiopatología
7.
Sci Rep ; 6: 31129, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27488140

RESUMEN

The lack of a marker of epileptogenesis is an unmet medical need, not only from the clinical perspective but also from the point of view of the pre-clinical research. Indeed, the lack of this kind of marker affects the investigations on the mechanisms of epileptogenesis as well as the development of novel therapeutic approaches aimed to prevent or to mitigate the severity of the incoming epilepsy in humans. In this work, we provide evidence that in an experimental model of epileptogenesis that mimics the alteration of the blood-brain barrier permeability, a key-mechanism that contributes to the development of epilepsy in humans and in animals, the prolonged occurrence in the electrocorticograms (ECoG) of high rates of a nonlinear dynamical regimes known as intermittency univocally characterizes the population of experimental animals which develop epilepsy, hence it can be considered as the first biophysical marker of epileptogenesis.


Asunto(s)
Epilepsia/patología , Animales , Biomarcadores/metabolismo , Barrera Hematoencefálica/patología , Modelos Animales de Enfermedad , Electrocorticografía/métodos , Epilepsia/metabolismo , Ratones , Dinámicas no Lineales , Permeabilidad
8.
J Immunol ; 195(4): 1713-22, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26136430

RESUMEN

TGF-ß1 is a master cytokine in immune regulation, orchestrating both pro- and anti-inflammatory reactions. Recent studies show that whereas TGF-ß1 induces a quiescent microglia phenotype, it plays a pathogenic role in the neurovascular unit and triggers neuronal hyperexcitability and epileptogenesis. In this study, we show that, in primary glial cultures, TGF-ß signaling induces rapid upregulation of the cytokine IL-6 in astrocytes, but not in microglia, via enhanced expression, phosphorylation, and nuclear translocation of SMAD2/3. Electrophysiological recordings show that administration of IL-6 increases cortical excitability, culminating in epileptiform discharges in vitro and spontaneous seizures in C57BL/6 mice. Intracellular recordings from layer V pyramidal cells in neocortical slices obtained from IL-6 -: treated mice show that during epileptogenesis, the cells respond to repetitive orthodromic activation with prolonged after-depolarization with no apparent changes in intrinsic membrane properties. Notably, TGF-ß1 -: induced IL-6 upregulation occurs in brains of FVB/N but not in brains of C57BL/6 mice. Overall, our data suggest that TGF-ß signaling in the brain can cause astrocyte activation whereby IL-6 upregulation results in dysregulation of astrocyte -: neuronal interactions and neuronal hyperexcitability. Whereas IL-6 is epileptogenic in C57BL/6 mice, its upregulation by TGF-ß1 is more profound in FVB/N mice characterized as a relatively more susceptible strain to seizure-induced cell death.


Asunto(s)
Epilepsia/metabolismo , Interleucina-6/metabolismo , Neuroglía/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/genética , Epilepsia/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-6/genética , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especificidad de Órganos/genética , Fosforilación/efectos de los fármacos , Transporte de Proteínas , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/administración & dosificación , Factor de Crecimiento Transformador beta/farmacología
9.
Neurobiol Dis ; 78: 115-25, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25836421

RESUMEN

Post-injury epilepsy (PIE) is a common complication following brain insults, including ischemic, and traumatic brain injuries. At present, there are no means to identify the patients at risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-ß) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures remains unknown. Here we demonstrate in vitro and in vivo that activation of the astrocytic ALK5/TGF-ß-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-ß inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process and highlight the manipulation of the TGF-ß-pathway as a potential strategy for the prevention of PIE.


Asunto(s)
Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Epilepsia/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Albúmina Sérica/administración & dosificación , Sinapsis/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Astrocitos/efectos de los fármacos , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Convulsiones/inducido químicamente , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos
11.
Epilepsia ; 55(8): 1255-63, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24995798

RESUMEN

OBJECTIVE: We tested the hypothesis that interstitial albumin can contribute to pharmacoresistance, which is common among patients with focal epilepsies. These patients often present with an open blood-brain barrier (BBB), resulting in diffusion of drug-binding albumin into the brain interstitial space. METHODS: Seizure-like events (SLEs) induced by 100 µm 4-aminopyridine (4-AP) were monitored using extracellular field potential recordings from acute rat entorhinal cortex-hippocampus slices. Effects of standard antiepileptic drugs (phenytoin, valproic acid, carbamazepine, and phenobarbital) were studied in the presence of albumin applied acutely or by intraventricular injection. Unbound antiepileptic drugs (AEDs) were detected by ultrafiltration and high-performance liquid chromatography (HPLC). RESULTS: Contrary to the absence of albumin, conventional AEDs failed to suppress SLEs in the rat entorhinal cortex in the presence of albumin. This effect was partially caused by buffering of phenytoin and carbamazepine (CBZ) by albumin. Increasing CBZ concentration from 50 µm to 100 µm resulted in block of SLEs. In slices obtained from animals that were pretreated with intraventricular albumin application 24 h prior to experiment, CBZ suppressed SLEs similar to control slices. We also found that application of serum-like electrolytes transformed SLEs into late recurrent discharges (LRDs), which were no longer responding to CBZ. SIGNIFICANCE: A dysfunctional BBB with acute extravasation of serum albumin into the brain's interstitial space could contribute to pharmacoresistance. In such instances, choice of an AED with low albumin binding affinity may help in seizure control.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/metabolismo , Barrera Hematoencefálica/metabolismo , Resistencia a Medicamentos/fisiología , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , 4-Aminopiridina/toxicidad , Animales , Barrera Hematoencefálica/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inyecciones Intraventriculares , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Albúmina Sérica Bovina/administración & dosificación
12.
Ann Neurol ; 75(6): 864-75, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24659129

RESUMEN

OBJECTIVE: Acquired epilepsy is frequently associated with structural lesions after trauma, stroke, and infections. Although seizures are often difficult to treat, there is no clinically applicable strategy to prevent the development of epilepsy in patients at risk. We have recently shown that vascular injury is associated with activation of albumin-mediated transforming growth factor ß (TGF-ß) signaling, and followed by local inflammatory response and epileptiform activity ex vivo. Here we investigated albumin-mediated TGF-ß signaling and tested the efficacy of blocking the TGF-ß pathway in preventing epilepsy. METHODS: We addressed the role of TGF-ß signaling in epileptogenesis in 2 different rat models of vascular injury, combining in vitro and in vivo biochemical assays, gene expression, and magnetic resonance and direct optical imaging for blood-brain barrier permeability and vascular reactivity. Long-term electrocorticographic recordings were acquired in freely behaving animals. RESULTS: We demonstrate that serum-derived albumin preferentially induces activation of the activin receptor-like kinase 5 pathway of TGF-ß receptor I in astrocytes. We further show that the angiotensin II type 1 receptor antagonist, losartan, previously identified as a blocker of peripheral TGF-ß signaling, effectively blocks albumin-induced TGF-ß activation in the brain. Most importantly, losartan prevents the development of delayed recurrent spontaneous seizures, an effect that persists weeks after drug withdrawal. INTERPRETATION: TGF-ß signaling, activated in astrocytes by serum-derived albumin, is involved in epileptogenesis. We propose losartan, a drug approved by the US Food and Drug Administration, as an efficient antiepileptogenic therapy for epilepsy associated with vascular injury.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia/prevención & control , Losartán/uso terapéutico , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Animales , Animales Recién Nacidos , Anticonvulsivantes/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Benzamidas/farmacología , Barrera Hematoencefálica/fisiología , Células Cultivadas , Corteza Cerebral/citología , Dioxoles/farmacología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Endocitosis/efectos de los fármacos , Epilepsia/inducido químicamente , Epilepsia/patología , Epilepsia/fisiopatología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/genética
13.
PLoS One ; 8(10): e76092, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098426

RESUMEN

The ability to visualize and genetically manipulate specific cell populations of the central nervous system (CNS) is fundamental to a better understanding of brain functions at the cellular and molecular levels. Tools to selectively target cells of the CNS include molecular genetics, imaging, and use of transgenic animals. However, these approaches are technically challenging, time consuming, and difficult to control. Viral-mediated targeting of cells in the CNS can be highly beneficial for studying and treating neurodegenerative diseases. Yet, despite specific marking of numerous cell types in the CNS, in vivo selective targeting of astrocytes has not been optimized. In this study, preferential targeting of astrocytes in the CNS was demonstrated using engineered lentiviruses that were pseudotyped with a modified Sindbis envelope and displayed anti-GLAST IgG on their surfaces as an attachment moiety. Viral tropism for astrocytes was initially verified in vitro in primary mixed glia cultures. When injected into the brains of mice, lentiviruses that displayed GLAST IgG on their surface, exhibited preferential astrocyte targeting, compared to pseudotyped lentiviruses that did not incorporate any IgG or that expressed a control isotype IgG. Overall, this approach is highly flexible and can be exploited to selectively target astrocytes or other cell types of the CNS. As such, it can open a window to visualize and genetically manipulate astrocytes or other cells of the CNS as means of research and treatment.


Asunto(s)
Astrocitos/metabolismo , Sistema Nervioso Central/metabolismo , Vectores Genéticos/genética , Lentivirus/genética , Transducción Genética , Animales , Línea Celular , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Neuroglía/metabolismo
14.
Epilepsia ; 53(11): 1887-97, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22984896

RESUMEN

PURPOSE: Dysfunction of the blood-brain barrier (BBB) is a common finding during seizures or following epileptogenic brain injuries, and experimentally induced BBB opening promotes seizures both in naive and epileptic animals. Brain albumin extravasation was reported to promote hyperexcitability by inducing astrocytes dysfunction. To provide in vivo evidence for a direct role of extravasated serum albumin in seizures independently on the pathologic context, we did the following: (1) quantified the amount of serum albumin extravasated in the rat brain parenchyma during status epilepticus (SE); (2) reproduced a similar concentration in the hippocampus by intracerebroventricular (i.c.v.) albumin injection in naive rats; (3) measured electroencephalography (EEG) activity in these rats, their susceptibility to kainic acid (KA)-induced seizures, and their hippocampal afterdischarge threshold (ADT). METHODS: Brain albumin concentration was measured in the rat hippocampus and other forebrain regions 2 and 24 h after SE by western blot analysis. Brain distribution of serum albumin or fluorescein isothiocyanate (FITC)-albumin was studied by immunohistochemistry and immunofluorescence, respectively. Naive rats were injected with rat albumin or FITC-albumin, i.c.v., to mimic the brain concentration attained after SE, or with dextran used as control. Inflammation was evaluated by immunohistochemistry by measuring glial induction of interleukin (IL)-1ß. Western blot analysis was used to measure inward rectifying potassium channel subunit Kir4.1 protein levels in the hippocampus. Seizures were induced in rats by intrahippocampal injection of 80 ng KA and quantified by EEG analysis, 2 or 24 h after rat albumin or dextran administration. ADT was measured by electrical stimulation of the hippocampus 3 months after albumin injection. In these rats, EEG was continuously monitored for 2 weeks to search for spontaneous seizures. KEY FINDINGS: The hippocampal serum albumin concentration 24 h post-SE was 0.76 ± 0.21 µm. Similar concentrations were measured in other forebrain regions, whereas no changes were found in cerebellum. The hippocampal albumin concentration was similarly reproduced in naive rats by i.c.v. administration of 500 µg/4 µl rat albumin: albumin was predominantly detected extracellularly 2 h after injection, whereas at 24 h it was visible inside pyramidal neurons and in only a few scattered chondroitin sulphate proteoglycan (NG2)-positive cells, but not in glial fibrillary acidic protein (GFAP)-positive astrocytes or CR-3 complement receptor (OX-42)-positive microglia. The presence of albumin in naive rat hippocampus was associated with induced IL-1ß in GFAP-positive astrocytes and a concomitant tissue down-regulation of Kir4.1. Spiking activity was evoked by albumin in the hippocampus lasting for 2 h. When KA was intrahippocampally applied either 2 or 24 h after albumin injection, the number of total interictal spikes in 3 h EEG recording was significantly increased by twofold on average. Three months after albumin injection, neither albumin nor inflammation was detected in brain tissue; at this time, the ADT was reduced by 50% but no spontaneous seizures were observed. SIGNIFICANCE: Transient hippocampal exposure to albumin levels similar to those attained after prominent BBB breakdown resulted in increased seizure susceptibility and long-term reduction in seizure threshold, but it did not evoke spontaneous seizures. These effects may be mediated by albumin-induced astrocytes dysfunction and the associated induction of proinflammatory molecules.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Albúmina Sérica/metabolismo , Albúmina Sérica/toxicidad , Estado Epiléptico/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/fisiopatología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Inyecciones Intraventriculares , Masculino , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Estado Epiléptico/fisiopatología , Factores de Tiempo
15.
PLoS One ; 7(6): e39636, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22745798

RESUMEN

PURPOSE: The treatment of stroke remains a challenge. Animal studies showing that electrical stimulation of the sphenopalatine ganglion (SPG) exerts beneficial effects in the treatment of stroke have led to the initiation of clinical studies. However, the detailed effects of SPG stimulation on the injured brain are not known. METHODS: The effect of acute SPG stimulation was studied by direct vascular imaging, fluorescent angiography and laser Doppler flowmetry in the sensory motor cortex of the anaesthetized rat. Focal cerebral ischemia was induced by the rose bengal (RB) photothrombosis method. In chronic experiments, SPG stimulation, starting 15 min or 24 h after photothrombosis, was given for 3 h per day on four consecutive days. Structural damage was assessed using histological and immunohistochemical methods. Cortical functions were assessed by quantitative analysis of epidural electro-corticographic (ECoG) activity continuously recorded in behaving animals. RESULTS: Stimulation induced intensity- and duration-dependent vasodilation and increased cerebral blood flow in both healthy and photothrombotic brains. In SPG-stimulated rats both blood brain-barrier (BBB) opening, pathological brain activity and lesion volume were attenuated compared to untreated stroke animals, with no apparent difference in the glial response surrounding the necrotic lesion. CONCLUSION: SPG-stimulation in rats induces vasodilation of cortical arterioles, partial reperfusion of the ischemic lesion, and normalization of brain functions with reduced BBB dysfunction and stroke volume. These findings support the potential therapeutic effect of SPG stimulation in focal cerebral ischemia even when applied 24 h after stroke onset and thus may extend the therapeutic window of currently administered stroke medications.


Asunto(s)
Barrera Hematoencefálica/inervación , Barrera Hematoencefálica/metabolismo , Ganglios Parasimpáticos/fisiología , Accidente Cerebrovascular/terapia , Animales , Estimulación Eléctrica , Masculino , Ratas , Ratas Sprague-Dawley
16.
J Biol Chem ; 286(34): 30022-33, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21705317

RESUMEN

Sphingolipids (SLs) act as signaling molecules and as structural components in both neuronal cells and myelin. We now characterize the biochemical, histological, and behavioral abnormalities in the brain of a mouse lacking very long acyl (C22-C24) chain SLs. This mouse, which is defective in the ability to synthesize C22-C24-SLs due to ablation of ceramide synthase 2, has reduced levels of galactosylceramide (GalCer), a major component of myelin, and in particular reduced levels of non-hydroxy-C22-C24-GalCer and 2-hydroxy-C22-C24- GalCer. Noteworthy brain lesions develop with a time course consistent with a vital role for C22-C24-GalCer in myelin stability. Myelin degeneration and detachment was observed as was abnormal motor behavior originating from a subcortical region. Additional abnormalities included bilateral and symmetrical vacuolization and gliosis in specific brain areas, which corresponded to some extent to the pattern of ceramide synthase 2 expression, with astrogliosis considerably more pronounced than microglial activation. Unexpectedly, unidentified storage materials were detected in lysosomes of astrocytes, reminiscent of the accumulation that occurs in lysosomal storage disorders. Together, our data demonstrate a key role in the brain for SLs containing very long acyl chains and in particular GalCer with a reduction in their levels leading to distinctive morphological abnormalities in defined brain regions.


Asunto(s)
Astrocitos/metabolismo , Encefalopatías Metabólicas Innatas/metabolismo , Encéfalo/metabolismo , Galactosilceramidas/metabolismo , Microglía/metabolismo , Vaina de Mielina/metabolismo , Animales , Astrocitos/patología , Encéfalo/patología , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/patología , Galactosilceramidas/genética , Ratones , Ratones Mutantes , Microglía/patología , Vaina de Mielina/patología , Esfingosina N-Aciltransferasa/metabolismo
17.
Epilepsy Res Treat ; 2011: 143908, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22937228

RESUMEN

Epilepsy of the temporal lobe (TLE) is the most common form of focal epilepsy, and in adults, it most frequently develops after injury. However, the mechanisms by which a normal functioning brain turns into an epileptic one still remain obscure. Recent studies point to vascular involvement and particularly blood-brain barrier (BBB) dysfunction in the development of epilepsy. The BBB is a specialized structure which functions to control the neuronal extracellular milieu. BBB dysfunction is found in many diseases of the central nervous system, including stroke, traumatic injuries, tumors and infections. Interestingly, all these insults may initiate an epileptogenic process which eventually leads to spontaneous, recurrent seizures. This epileptogenic time frame usually lasts weeks, months, or even years in man, and days to weeks in rodents and may serve as a "window of opportunity" for the prevention of epilepsy. However, no prevention strategy exists, stressing the importance of research into the mechanisms of epileptogenesis. Here, we will underscore recent experiments suggesting that BBB dysfunction directly induces epileptogenesis. We will provide new evidence to support the hypothesis that BBB breakdown and specifically exposure of temporal lobe structures to the most common serum protein, albumin, is sufficient to induce epileptogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...