Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
bioRxiv ; 2024 Jan 11.
Article En | MEDLINE | ID: mdl-37503082

Bet hedging is a ubiquitous strategy for risk reduction in the face of unpredictable environmental change where a lineage lowers its variance in fitness across environments at the expense of also lowering its arithmetic mean fitness. Classically, the benefit of bet hedging has been quantified using geometric mean fitness (GMF); bet hedging is expected to evolve if and only if it has a higher GMF than the wild-type. We build upon previous research on the effect of incorporating stochasticity in phenotypic distribution, environment, and reproduction to investigate the extent to which these sources of stochasticity will impact the evolution of real-world bet hedging traits. We utilize both individual-based simulations and Markov chain numerics to demonstrate that modeling stochasticity can alter the sign of selection for the bet hedger compared to deterministic predictions. We find that bet hedging can be deleterious at small population sizes and beneficial at larger population sizes. This non-monotonic dependence of the sign of selection on population size, known as sign inversion, exists across parameter space for both conservative and diversified bet hedgers. We apply our model to published data of bet hedging strategies to show that sign inversion exists for biologically relevant parameters in two study systems: Papaver dubium, an annual poppy with variable germination phenology, and Salmonella typhimurium, a pathogenic bacteria that exhibits antibiotic persistence. Taken together, our results suggest that GMF is not enough to predict when bet hedging is adaptive.

2.
mBio ; 11(2)2020 03 03.
Article En | MEDLINE | ID: mdl-32127450

Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver.IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.


Anthozoa/microbiology , Microbiota , Models, Theoretical , Temperature , Animals , Bermuda , Metagenomics , Microbial Interactions , Mucus/microbiology
...