Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Biosci Rep ; 44(1)2024 Jan 31.
Article En | MEDLINE | ID: mdl-38131452

Upon SARS-CoV-2 infection, patients with severe forms of COVID-19 often suffer from a dysregulated immune response and hyperinflammation. Aberrant expression of cytokines and chemokines is associated with strong activation of the immunoregulatory transcription factor NF-κB, which can be directly induced by the SARS-CoV-2 protein NSP14. Here, we use NSP14 mutants and generated cells with host factor knockouts (KOs) in the NF-κB signaling pathways to characterize the molecular mechanism of NSP14-induced NF-κB activation. We demonstrate that full-length NSP14 requires methyltransferase (MTase) activity to drive NF-κB induction. NSP14 WT, but not an MTase-defective mutant, is poorly expressed and inherent post-translational instability is mediated by proteasomal degradation. Binding of SARS-CoV-2 NSP10 or addition of the co-factor S-adenosylmethionine (SAM) stabilizes NSP14 and augments its potential to activate NF-κB. Using CRISPR/Cas9-engineered KO cells, we demonstrate that NSP14 stimulation of canonical NF-κB activation relies on NF-κB factor p65/RELA downstream of the NEMO/IKK complex, while c-Rel or non-canonical RelB are not required to induce NF-κB transcriptional activity. However, NSP14 overexpression is unable to induce canonical IκB kinase ß (IKKß)/NF-κB signaling and in co-immunoprecipitation assays we do not detect stable associations between NSP14 and NEMO or p65, suggesting that NSP14 activates NF-κB indirectly through its methyltransferase activity. Taken together, our data provide a framework how NSP14 can augment basal NF-κB activation, which may enhance cytokine expression in SARS-CoV-2 infected cells.


COVID-19 , NF-kappa B , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/genetics , Signal Transduction , Methyltransferases/genetics , Methyltransferases/metabolism
2.
G3 (Bethesda) ; 13(7)2023 07 05.
Article En | MEDLINE | ID: mdl-37267226

The COVID-19 pandemic has catalyzed unprecedented scientific data and reagent sharing and collaboration, which enabled understanding the virology of the SARS-CoV-2 virus and vaccine development at record speed. The pandemic, however, has also raised awareness of the danger posed by the family of coronaviruses, of which 7 are known to infect humans and dozens have been identified in reservoir species, such as bats, rodents, or livestock. To facilitate understanding the commonalities and specifics of coronavirus infections and aspects of viral biology that determine their level of lethality to the human host, we have generated a collection of freely available clones encoding nearly all human coronavirus proteins known to date. We hope that this flexible, Gateway-compatible vector collection will encourage further research into the interactions of coronaviruses with their human host, to increase preparedness for future zoonotic viral outbreaks.


COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Pandemics
3.
Nat Biotechnol ; 41(1): 140-149, 2023 01.
Article En | MEDLINE | ID: mdl-36217029

Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Proteome/genetics , Post-Acute COVID-19 Syndrome , Virus Replication/genetics , Ubiquitin Thiolesterase/pharmacology
5.
Nature ; 583(7815): 271-276, 2020 07.
Article En | MEDLINE | ID: mdl-32612234

Plant hormones coordinate responses to environmental cues with developmental programs1, and are fundamental for stress resilience and agronomic yield2. The core signalling pathways underlying the effects of phytohormones have been elucidated by genetic screens and hypothesis-driven approaches, and extended by interactome studies of select pathways3. However, fundamental questions remain about how information from different pathways is integrated. Genetically, most phenotypes seem to be regulated by several hormones, but transcriptional profiling suggests that hormones trigger largely exclusive transcriptional programs4. We hypothesized that protein-protein interactions have an important role in phytohormone signal integration. Here, we experimentally generated a systems-level map of the Arabidopsis phytohormone signalling network, consisting of more than 2,000 binary protein-protein interactions. In the highly interconnected network, we identify pathway communities and hundreds of previously unknown pathway contacts that represent potential points of crosstalk. Functional validation of candidates in seven hormone pathways reveals new functions for 74% of tested proteins in 84% of candidate interactions, and indicates that a large majority of signalling proteins function pleiotropically in several pathways. Moreover, we identify several hundred largely small-molecule-dependent interactions of hormone receptors. Comparison with previous reports suggests that noncanonical and nontranscription-mediated receptor signalling is more common than hitherto appreciated.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Growth Regulators/metabolism , Protein Interaction Maps , Signal Transduction , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Protein Binding , Protein Interaction Mapping , Reproducibility of Results , Transcription, Genetic
6.
Proc Natl Acad Sci U S A ; 114(5): E887-E896, 2017 01 31.
Article En | MEDLINE | ID: mdl-28096328

The directional distribution of the phytohormone auxin is essential for plant development. Directional auxin transport is mediated by the polarly distributed PIN-FORMED (PIN) auxin efflux carriers. We have previously shown that efficient PIN1-mediated auxin efflux requires activation through phosphorylation at the four serines S1-S4 in Arabidopsis thaliana The Brefeldin A (BFA)-sensitive D6 PROTEIN KINASE (D6PK) and the BFA-insensitive PINOID (PID) phosphorylate and activate PIN1 through phosphorylation at all four phosphosites. PID, but not D6PK, can also induce PIN1 polarity shifts, seemingly through phosphorylation at S1-S3. The differential effects of D6PK and PID on PIN1 polarity had so far been attributed to their differential phosphosite preference for the four PIN1 phosphosites. We have mapped PIN1 phosphorylation at S1-S4 in situ using phosphosite-specific antibodies. We detected phosphorylation at PIN1 phosphosites at the basal (rootward) as well as the apical (shootward) plasma membrane in different root cell types, in embryos, and shoot apical meristems. Thereby, PIN1 phosphorylation at all phosphosites generally followed the predominant PIN1 distribution but was not restricted to specific polar sides of the cells. PIN1 phosphorylation at the basal and apical plasma membrane was differentially sensitive to BFA treatments, suggesting the involvement of different protein kinases or trafficking mechanisms in PIN1 phosphorylation control. We conclude that phosphosite preferences are not sufficient to explain the differential effects of D6PK and PID on PIN1 polarity, and suggest that a more complex model is needed to explain the effects of PID.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Membrane Transport Proteins/metabolism , Protein Kinases/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Arabidopsis/growth & development , Arabidopsis Proteins/antagonists & inhibitors , Biological Transport , Brefeldin A/pharmacology , Cell Membrane/metabolism , Cell Polarity , Meristem/metabolism , Organ Specificity , Phosphorylation/drug effects , Plant Structures/metabolism , Protein Processing, Post-Translational/drug effects , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Transport , Sequence Alignment
7.
Elife ; 32014 Jun 19.
Article En | MEDLINE | ID: mdl-24948515

The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the--in many cells--asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/chemistry , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Biological Transport , Cell Membrane/metabolism , Microscopy, Confocal , Mutation , Oocytes/cytology , Oocytes/metabolism , Phosphorylation , Xenopus
8.
Dev Cell ; 29(6): 674-85, 2014 Jun 23.
Article En | MEDLINE | ID: mdl-24930721

The directed cell-to-cell transport of the phytohormone auxin by efflux and influx transporters is essential for proper plant growth and development. Like auxin efflux facilitators of the PIN-FORMED (PIN) family, D6 PROTEIN KINASE (D6PK) from Arabidopsis thaliana localizes to the basal plasma membrane of many cells, and evidence exists that D6PK may directly phosphorylate PINs. We find that D6PK is a membrane-bound protein that is associated with either the basal domain of the plasma membrane or endomembranes. Inhibition of the trafficking regulator GNOM leads to a rapid internalization of D6PK to endomembranes. Interestingly, the dissociation of D6PK from the plasma membrane is also promoted by auxin. Surprisingly, we find that auxin transport-dependent tropic responses are critically and reversibly controlled by D6PK and D6PK-dependent PIN phosphorylation at the plasma membrane. We conclude that D6PK abundance at the plasma membrane and likely D6PK-dependent PIN phosphorylation are prerequisites for PIN-mediated auxin transport.


Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/pharmacology , Membrane Transport Proteins/metabolism , Plant Roots/growth & development , Protein Kinases/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Biological Transport/drug effects , Clathrin/metabolism , Endocytosis , Immunoblotting , Phosphorylation/drug effects , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/metabolism
9.
Curr Biol ; 24(9): 1031-7, 2014 May 05.
Article En | MEDLINE | ID: mdl-24768050

The plant hormones auxin and cytokinin mutually coordinate their activities to control various aspects of development [1-9], and their crosstalk occurs at multiple levels [10, 11]. Cytokinin-mediated modulation of auxin transport provides an efficient means to regulate auxin distribution in plant organs. Here, we demonstrate that cytokinin does not merely control the overall auxin flow capacity, but might also act as a polarizing cue and control the auxin stream directionality during plant organogenesis. Cytokinin enhances the PIN-FORMED1 (PIN1) auxin transporter depletion at specific polar domains, thus rearranging the cellular PIN polarities and directly regulating the auxin flow direction. This selective cytokinin sensitivity correlates with the PIN protein phosphorylation degree. PIN1 phosphomimicking mutations, as well as enhanced phosphorylation in plants with modulated activities of PIN-specific kinases and phosphatases, desensitize PIN1 to cytokinin. Our results reveal conceptually novel, cytokinin-driven polarization mechanism that operates in developmental processes involving rapid auxin stream redirection, such as lateral root organogenesis, in which a gradual PIN polarity switch defines the growth axis of the newly formed organ.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Membrane Transport Proteins/metabolism , Plant Roots/growth & development , Arabidopsis/embryology , Arabidopsis/physiology , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Biological Transport , Gene Expression Regulation, Plant , Histidine Kinase , Membrane Transport Proteins/genetics , Organogenesis, Plant , Phosphorylation , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Protein Kinases/biosynthesis , Protein Kinases/metabolism , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/metabolism , Signal Transduction
...