Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 106
1.
bioRxiv ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38617373

Post-transplant complications reduce allograft and recipient survival. Current approaches for detecting allograft injury non-invasively are limited and do not differentiate between cellular mechanisms. Here, we monitor cellular damages after liver transplants from cell-free DNA (cfDNA) fragments released from dying cells into the circulation. We analyzed 130 blood samples collected from 44 patients at different time points after transplant. Sequence-based methylation of cfDNA fragments were mapped to patterns established to identify cell types in different organs. For liver cell types DNA methylation patterns and multi-omic data integration show distinct enrichment in open chromatin and regulatory regions functionally important for the respective cell types. We find that multi-tissue cellular damages post-transplant recover in patients without allograft injury during the first post-operative week. However, sustained elevation of hepatocyte and biliary epithelial cfDNA beyond the first week indicates early-onset allograft injury. Further, cfDNA composition differentiates amongst causes of allograft injury indicating the potential for non-invasive monitoring and timely intervention.

2.
Sci Rep ; 14(1): 9377, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654067

Poor treatment responses of pancreatic ductal adenocarcinoma (PDAC) are in large part due to tumor heterogeneity and an immunosuppressive desmoplastic tumor stroma that impacts interactions with cells in the tumor microenvironment (TME). Thus, there is a pressing need for models to probe the contributions of cellular and noncellular crosstalk. Organoids are promising model systems with the potential to generate a plethora of data including phenotypic, transcriptomic and genomic characterization but still require improvements in culture conditions mimicking the TME. Here, we describe an INTERaction with Organoid-in-MatriX ("InterOMaX") model system, that presents a 3D co-culture-based platform for investigating matrix-dependent cellular crosstalk. We describe its potential to uncover new molecular mechanisms of T cell responses to murine KPC (LSL-KrasG12D/+27/Trp53tm1Tyj/J/p48Cre/+) PDAC cells as well as PDAC patient-derived organoids (PDOs). For this, a customizable matrix and homogenously sized organoid-in-matrix positioning of cancer cells were designed based on a standardized agarose microwell chip array system and established for co-culture with T cells and inclusion of stromal cells. We describe the detection and orthogonal analysis of murine and human PDAC cell populations with distinct sensitivity to T cell killing that is corroborated in vivo. By enabling both identification and validation of gene candidates for T cell resistance, this platform sets the stage for better mechanistic understanding of cancer cell-intrinsic resistance phenotypes in PDAC.


Carcinoma, Pancreatic Ductal , Organoids , Pancreatic Neoplasms , T-Lymphocytes , Tumor Microenvironment , Organoids/pathology , Organoids/metabolism , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/immunology , Mice , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Coculture Techniques/methods , Cell Line, Tumor
3.
Front Endocrinol (Lausanne) ; 14: 1250218, 2023.
Article En | MEDLINE | ID: mdl-37711895

The estrogen receptor alpha (ERα) is a steroid receptor that is pivotal in the initiation and progression of most breast cancers. ERα regulates gene transcription through recruitment of essential coregulators, including the steroid receptor coactivator AIB1 (Amplified in Breast Cancer 1). AIB1 itself is an oncogene that is overexpressed in a subset of breast cancers and is known to play a role in tumor progression and resistance to endocrine therapy through multiple mechanisms. Here we review the normal and pathological functions of AIB1 in regard to its ERα-dependent and ERα-independent actions, as well as its genomic conservation and protein evolution. We also outline the efforts to target AIB1 in the treatment of breast cancer.


Estrogen Receptor alpha , Neoplasms , Humans , Estrogen Receptor alpha/genetics , Oncogenes , Cognition , Genomics , Nuclear Receptor Coactivator 3/genetics
5.
Int J Mol Sci ; 24(14)2023 Jul 15.
Article En | MEDLINE | ID: mdl-37511268

Mutations in the gene ankyrin repeat domain containing 11 (ANKRD11/ANCO1) play a role in neurodegenerative disorders, and its loss of heterozygosity and low expression are seen in some cancers. Here, we show that low ANCO1 mRNA and protein expression levels are prognostic markers for poor clinical outcomes in breast cancer and that loss of nuclear ANCO1 protein expression predicts lower overall survival of patients with triple-negative breast cancer (TNBC). Knockdown of ANCO1 in early-stage TNBC cells led to aneuploidy, cellular senescence, and enhanced invasion in a 3D matrix. The presence of a subpopulation of ANCO1-depleted cells enabled invasion of the overall cell population in vitro and they converted more rapidly to invasive lesions in a xenograft mouse model. In ANCO1-depleted cells, ChIP-seq analysis showed a global increase in H3K27Ac signals that were enriched for AP-1, TEAD, STAT3, and NFκB motifs. ANCO1-regulated H3K27Ac peaks had a significantly higher overlap with known breast cancer enhancers compared to ANCO1-independent ones. H3K27Ac engagement was associated with transcriptional activation of genes in the PI3K-AKT, epithelial-mesenchymal transition (EMT), and senescence pathways. In conclusion, ANCO1 has hallmarks of a tumor suppressor whose loss of expression activates breast-cancer-specific enhancers and oncogenic pathways that can accelerate the early-stage progression of breast cancer.


Chromatin , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chromatin/genetics , Chromatin/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
6.
JCI Insight ; 8(14)2023 07 24.
Article En | MEDLINE | ID: mdl-37318863

Radiation therapy is an effective cancer treatment, although damage to healthy tissues is common. Here we analyzed cell-free, methylated DNA released from dying cells into the circulation to evaluate radiation-induced cellular damage in different tissues. To map the circulating DNA fragments to human and mouse tissues, we established sequencing-based, cell-type-specific reference DNA methylation atlases. We found that cell-type-specific DNA blocks were mostly hypomethylated and located within signature genes of cellular identity. Cell-free DNA fragments were captured from serum samples by hybridization to CpG-rich DNA panels and mapped to the DNA methylation atlases. In a mouse model, thoracic radiation-induced tissue damage was reflected by dose-dependent increases in lung endothelial and cardiomyocyte methylated DNA in serum. The analysis of serum samples from patients with breast cancer undergoing radiation treatment revealed distinct dose-dependent and tissue-specific epithelial and endothelial responses to radiation across multiple organs. Strikingly, patients treated for right-sided breast cancers also showed increased hepatocyte and liver endothelial DNA in the circulation, indicating the impact on liver tissues. Thus, changes in cell-free methylated DNA can uncover cell-type-specific effects of radiation and provide a readout of the biologically effective radiation dose received by healthy tissues.


Cell-Free Nucleic Acids , DNA Methylation , Humans , Animals , Mice , Liver/metabolism , Hepatocytes , DNA/metabolism , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/metabolism
7.
Cancers (Basel) ; 15(6)2023 Mar 22.
Article En | MEDLINE | ID: mdl-36980794

BACKGROUND: CDK4/6 inhibitors (CDKi) have improved disease control in hormone-receptor-positive, HER2-negative metastatic breast cancer, but most patients develop progressive disease. METHODS: We asked whether host stromal senescence after CDK4/6 inhibition affects metastatic seeding and growth of CDKi-resistant mammary cancer cells by using the p16-INK-ATTAC mouse model of inducible senolysis. RESULTS: Palbociclib pretreatment of naïve mice increased lung seeding of CDKi-resistant syngeneic mammary cancer cells, and this effect was reversed by depletion of host senescent cells. RNA sequencing analyses of lungs from non-tumor-bearing p16-INK-ATTAC mice identified that palbociclib downregulates immune-related gene sets and gene expression related to leukocyte migration. Concomitant senolysis reversed a portion of these effects, including pathway-level enrichment of TGF-ß- and senescence-related signaling. CIBERSORTx analysis revealed that palbociclib alters intra-lung macrophage/monocyte populations. Notably, lung metastases from palbociclib-pretreated mice revealed senescent endothelial cells. Palbociclib-treated endothelial cells exhibit hallmark senescent features in vitro, upregulate genes involved with the senescence-associated secretory phenotype, leukocyte migration, and TGF-ß-mediated paracrine senescence and induce tumor cell migration and monocyte trans-endothelial invasion in co-culture. CONCLUSIONS: These studies shed light on how stromal senescence induced by palbociclib affects lung metastasis, and they describe palbociclib-induced gene expression changes in the normal lung and endothelial cell models that correlate with changes in the tumor microenvironment in the lung metastatic niche.

8.
J Exp Med ; 220(5)2023 05 01.
Article En | MEDLINE | ID: mdl-36828390

Metastatic cancer cells adapt to thrive in secondary organs. To investigate metastatic adaptation, we performed transcriptomic analysis of metastatic and non-metastatic murine breast cancer cells. We found that pleiotrophin (PTN), a neurotrophic cytokine, is a metastasis-associated factor that is expressed highly by aggressive breast cancers. Moreover, elevated PTN in plasma correlated significantly with metastasis and reduced survival of breast cancer patients. Mechanistically, we find that PTN activates NF-κB in cancer cells leading to altered cytokine production, subsequent neutrophil recruitment, and an immune suppressive microenvironment. Consequently, inhibition of PTN, pharmacologically or genetically, reduces the accumulation of tumor-associated neutrophils and reverts local immune suppression, resulting in increased T cell activation and attenuated metastasis. Furthermore, inhibition of PTN significantly enhanced the efficacy of immune checkpoint blockade and chemotherapy in reducing metastatic burden in mice. These findings establish PTN as a previously unrecognized driver of a prometastatic immune niche and thus represents a promising therapeutic target for the treatment of metastatic breast cancer.


Carrier Proteins , Neoplasms , Mice , Animals , Cytokines/metabolism , NF-kappa B , Tumor Microenvironment
9.
J Vis Exp ; (181)2022 03 30.
Article En | MEDLINE | ID: mdl-35435909

Invasion and metastatic spread of cancer cells are the major cause of death from cancer. Assays developed early on to measure the invasive potential of cancer cell populations typically generate a single endpoint measurement that does not distinguish between cancer cell subpopulations with different invasive potential. Also, the tumor microenvironment consists of different resident stromal and immune cells that alter and participate in the invasive behavior of cancer cells. Invasion into tissues also plays a role in immune cell subpopulations fending off microorganisms or eliminating diseased cells from the parenchyma and endothelial cells during tissue remodeling and angiogenesis. Real-Time Cellular Analysis (RTCA) that utilizes impedance biosensors to monitor cell invasion was a major step forward beyond endpoint measurement of invasion: this provides continuous measurements over time and thus can reveal differences in invasion rates that are lost in the endpoint assay. Using current RTCA technology, we expanded dual-chamber arrays by adding a further chamber that can contain stromal and/or immune cells and allows measuring the rate of invasion under the influence of secreted factors from co-cultured stromal or immune cells over time. Beyond this, the unique design allows for detaching chambers at any time and isolating of the most invasive cancer cell, or other cell subpopulations that are present in heterogeneous mixes of tumor isolates tested. These most invasive cancer cells and other cell subpopulations drive malignant progression to metastatic disease, and their molecular characteristics are important for in-depth mechanistic studies, the development of diagnostic probes for their detection, and the assessment of vulnerabilities. Thus, the inclusion of small- or large-molecule drugs can be used to test the potential of therapies that target cancer and/or stromal cell subpopulations with the goal of inhibiting (e.g., cancer cells) or enhancing (e.g., immune cells) invasive behavior.


Endothelial Cells , Stromal Cells , Cell Line, Tumor , Coculture Techniques , Humans , Neoplasm Invasiveness/pathology , Stromal Cells/metabolism , Tumor Microenvironment
10.
Cancers (Basel) ; 14(6)2022 Mar 16.
Article En | MEDLINE | ID: mdl-35326668

Pancreatic adenocarcinoma is typically detected at a late stage and thus shows only limited sensitivity to treatment, making it one of the deadliest malignancies. In this study, we evaluate changes in microRNA (miR) patterns in peripheral blood as a potential readout of treatment responses of pancreatic cancer to inhibitors that target tumor-stroma interactions. Mice with pancreatic cancer cell (COLO357PL) xenografts were treated with inhibitors of either fibroblast growth factor receptor kinase (FGFR; PD173074) or anaplastic lymphoma kinase receptor (ALK; TAE684). While both treatments inhibited tumor angiogenesis, signal transduction, and mitogenesis to a similar extent, they resulted in distinct changes in circulating miR signatures. Comparison of the miR pattern in the tumor versus that in circulation showed that the inhibitors can be distinguished by their differential impact on tumor-derived miRs as well as host-derived circulating miRs. Distinct signatures that include circulating miR-1 and miR-22 are associated with the efficacy of ALK and FGFR inhibition, respectively. We propose that monitoring changes in circulating miR profiles can provide an early signature of treatment response or resistance to pathway-targeted drugs, and thus provide a non-invasive measurement to rapidly assess the efficacy of candidate therapies.

11.
Oncoimmunology ; 11(1): 2027136, 2022.
Article En | MEDLINE | ID: mdl-35127250

Pancreatic cancer remains largely unresponsive to immune modulatory therapy attributable in part to an immunosuppressive, desmoplastic tumor microenvironment. Here, we analyze mechanisms of cancer cell-autonomous resistance to T cells. We used a 3D co-culture model of cancer cell spheroids from the KPC (LSL-KrasG12D/+ /LSL-Trp53R172H/+ /p48-Cre) pancreatic ductal adenocarcinoma (PDAC) model, to examine interactions with tumor-educated T cells isolated from draining lymph nodes of PDAC-bearing mice. Subpopulations of cancer cells resistant to these tumor-educated T cells were isolated from the in vitro co-culture and their properties compared with sensitive cancer cells. In co-culture with resistant cancer cell subpopulations, tumor-educated T cells showed reduced effector T cell functionality, reduced infiltration into tumor cell spheroids and decreased induction of apoptosis. A combination of comparative transcriptomic analyses, cytometric and immunohistochemistry techniques allowed us to dissect the role of differential gene expression and signaling pathways between sensitive and resistant cells. A decreased expression of the chemokine CXCL12 (SDF-1) was revealed as a common feature in the resistant cell subpopulations. Adding back CXCL12 reversed the resistant phenotype and was inhibited by the CXCR4 inhibitor AMD3100 (plerixafor). We conclude that reduced CXCL12 signaling contributes to PDAC subpopulation resistance to T cell-mediated attack.


Carcinoma, Pancreatic Ductal , Heterocyclic Compounds , Pancreatic Neoplasms , Animals , Apoptosis , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Hematopoietic Stem Cell Mobilization , Heterocyclic Compounds/pharmacology , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , T-Lymphocytes , Tumor Microenvironment , Pancreatic Neoplasms
12.
Front Cell Dev Biol ; 9: 782841, 2021.
Article En | MEDLINE | ID: mdl-34957111

Angiotensin II can cause oxidative stress and increased blood pressure that result in long term cardiovascular pathologies. Here we evaluated the contribution of cellular senescence to the effect of chronic exposure to low dose angiotensin II in a model that mimics long term tissue damage. We utilized the INK-ATTAC (p16Ink4a-Apoptosis Through Targeted Activation of Caspase 8) transgenic mouse model that allows for conditional elimination of p16Ink4a -dependent senescent cells by administration of AP20187. Angiotensin II treatment for 3 weeks induced ATTAC transgene expression in kidneys but not in lung, spleen and brain tissues. In the kidneys increased expression of ATM, p15 and p21 matched with angiotensin II induction of senescence-associated secretory phenotype genes MMP3, FGF2, IGFBP2, and tPA. Senescent cells in the kidneys were identified as endothelial cells by detection of GFP expressed from the ATTAC transgene and increased expression of angiopoietin 2 and von Willebrand Factor, indicative of endothelial cell damage. Furthermore, angiotensin II induced expression of the inflammation-related glycoprotein versican and immune cell recruitment to the kidneys. AP20187-mediated elimination of p16-dependent senescent cells prevented physiologic, cellular and molecular responses to angiotensin II and provides mechanistic evidence of cellular senescence as a driver of angiotensin II effects.

13.
Front Genet ; 12: 671057, 2021.
Article En | MEDLINE | ID: mdl-34386036

Detection of cellular changes in tissue biopsies has been the basis for cancer diagnostics. However, tissue biopsies are invasive and limited by inaccuracies due to sampling locations, restricted sampling frequency, and poor representation of tissue heterogeneity. Liquid biopsies are emerging as a complementary approach to traditional tissue biopsies to detect dynamic changes in specific cell populations. Cell-free DNA (cfDNA) fragments released into the circulation from dying cells can be traced back to the tissues and cell types they originated from using DNA methylation, an epigenetic regulatory mechanism that is highly cell-type specific. Decoding changes in the cellular origins of cfDNA over time can reveal altered host tissue homeostasis due to local cancer invasion and metastatic spread to distant organs as well as treatment responses. In addition to host-derived cfDNA, changes in cancer cells can be detected from cell-free, circulating tumor DNA (ctDNA) by monitoring DNA mutations carried by cancer cells. Here, we will discuss computational approaches to identify and validate robust biomarkers of changed tissue homeostasis using cell-free, methylated DNA in the circulation. We highlight studies performing genome-wide profiling of cfDNA methylation and those that combine genetic and epigenetic markers to further identify cell-type specific signatures. Finally, we discuss opportunities and current limitations of these approaches for implementation in clinical oncology.

14.
Cancer Res ; 81(16): 4230-4241, 2021 08 15.
Article En | MEDLINE | ID: mdl-34135000

AIB1Δ4 is an N-terminally truncated isoform of the oncogene amplified in breast cancer 1 (AIB1) with increased expression in high-grade human ductal carcinoma in situ (DCIS). However, the role of AIB1Δ4 in DCIS malignant progression has not been defined. Here we CRISPR-engineered RNA splice junctions to produce normal and early-stage DCIS breast epithelial cells that expressed only AIB1Δ4. These cells showed enhanced motility and invasion in 3D cell culture. In zebrafish, AIB1Δ4-expressing cells enabled invasion of parental cells when present in a mixed population. In mouse xenografts, a subpopulation of AIB1Δ4 cells mixed with parental cells enhanced tumor growth, recurrence, and lung metastasis. AIB1Δ4 chromatin immunoprecipitation sequencing revealed enhanced binding to regions including peroxisome proliferator-activated receptor (PPAR) and glucocorticoid receptor (GR) genomic recognition sites. H3K27ac and H3K4me1 genomic engagement patterns revealed selective activation of breast cancer-specific enhancer sites by AIB1Δ4. AIB1Δ4 cells displayed upregulated inflammatory response genes and downregulated PPAR signaling gene expression patterns. In the presence of AIB1Δ4 enabler cells, parental cells increased NF-κB and WNT signaling. Cellular cross-talk was inhibited by the PPARγ agonist efatutazone but was enhanced by treatment with the GR agonist dexamethasone. In conclusion, expression of the AIB1Δ4-selective cistrome in a small subpopulation of cells triggers an "enabler" phenotype hallmarked by an invasive transcriptional program and collective malignant progression in a heterogeneous tumor population. SIGNIFICANCE: A minor subset of early-stage breast cancer cells expressing AIB1Δ4 enables bulk tumor cells to become invasive, suggesting that selective eradication of this population could impair breast cancer metastasis.


Nuclear Receptor Coactivator 3/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Animals , CRISPR-Cas Systems , Cell Culture Techniques, Three Dimensional , Cell Line, Tumor , Dexamethasone/chemistry , Disease Progression , Electric Impedance , Enhancer Elements, Genetic , Female , Humans , Lung Neoplasms/pathology , Mice , Mice, SCID , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Transplantation , Nuclear Receptor Coactivator 3/chemistry , Phenotype , Protein Isoforms , RNA Splicing , Receptors, Glucocorticoid/metabolism , Signal Transduction , Thiazolidinediones/pharmacology , Zebrafish
15.
Methods Mol Biol ; 2294: 3-16, 2021.
Article En | MEDLINE | ID: mdl-33742390

Cancer cell vascular invasion and extravasation at metastatic sites are hallmarks of malignant progression of cancer and associated with poor disease outcome. Here we describe an in vivo approach to study the invasive ability of cancer cells into the vasculature and their hematogenous metastatic seeding in zebrafish (Danio rerio). In one approach, extravasation of fluorescently labeled cancer cells is monitored in zebrafish embryos whose vasculature is marked by a contrasting fluorescent reporter. After injection into the precardiac sinus of 2-day-old embryos, cancer cells can extravasate from the vasculature into tissues over the next few days. Extravasated cancer cells are identified and counted in live embryos via fluorescence microscopy. In a second approach, intravasation of cancer cells can be evaluated by changing their injection site to the yolk sac of zebrafish embryos. In addition to monitoring the impact of drivers of malignant progression, candidate inhibitors can be studied in this in vivo model system for their efficacy as well as their toxicity for the host.


Disease Models, Animal , Neoplasm Invasiveness/pathology , Xenograft Model Antitumor Assays/methods , Animals , Transendothelial and Transepithelial Migration , Tumor Cells, Cultured , Zebrafish
16.
Gastrointest Disord (Basel) ; 3(3): 100-112, 2021 Sep.
Article En | MEDLINE | ID: mdl-35531260

Thoracic high dose radiation therapy (RT) for cancer has been associated with early and late cardiac toxicity. To assess altered rates of cardiomyocyte cell death due to RT we monitored changes in cardiomyocyte-specific, cell-free methylated DNA (cfDNA) shed into the circulation. Eleven patients with distal esophageal cancer treated with neoadjuvant chemoradiation to 50.4 Gy (RT) and concurrent carboplatin and paclitaxel were enrolled. Subjects underwent fasting blood draws prior to the initiation and after completion of RT as well as 4-6 months following RT. An island of six unmethylated CpGs in the FAM101A locus was used to identify cardiomyocyte-specific cfDNA in serum. After bisulfite treatment this specific cfDNA was quantified by amplicon sequencing at a depth of >35,000 reads/molecule. Cardiomyocyte-specific cfDNA was detectable before RT in the majority of patient samples and showed some distinct changes during the course of treatment and recovery. We propose that patient-specific cardiac damages in response to the treatment are indicated by these changes although co-morbidities may obscure treatment-specific events.

17.
Gastroenterology ; 160(4): 1359-1372.e13, 2021 03.
Article En | MEDLINE | ID: mdl-33307028

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) are characterized by fibrosis and an abundance of cancer-associated fibroblasts (CAFs). We investigated strategies to disrupt interactions among CAFs, the immune system, and cancer cells, focusing on adhesion molecule CDH11, which has been associated with other fibrotic disorders and is expressed by activated fibroblasts. METHODS: We compared levels of CDH11 messenger RNA in human pancreatitis and pancreatic cancer tissues and cells with normal pancreas, and measured levels of CDH11 protein in human and mouse pancreatic lesions and normal tissues. We crossed p48-Cre;LSL-KrasG12D/+;LSL-Trp53R172H/+ (KPC) mice with CDH11-knockout mice and measured survival times of offspring. Pancreata were collected and analyzed by histology, immunohistochemistry, and (single-cell) RNA sequencing; RNA and proteins were identified by imaging mass cytometry. Some mice were given injections of PD1 antibody or gemcitabine and survival was monitored. Pancreatic cancer cells from KPC mice were subcutaneously injected into Cdh11+/+ and Cdh11-/- mice and tumor growth was monitored. Pancreatic cancer cells (mT3) from KPC mice (C57BL/6), were subcutaneously injected into Cdh11+/+ (C57BL/6J) mice and mice were given injections of antibody against CDH11, gemcitabine, or small molecule inhibitor of CDH11 (SD133) and tumor growth was monitored. RESULTS: Levels of CDH11 messenger RNA and protein were significantly higher in CAFs than in pancreatic cancer epithelial cells, human or mouse pancreatic cancer cell lines, or immune cells. KPC/Cdh11+/- and KPC/Cdh11-/- mice survived significantly longer than KPC/Cdh11+/+ mice. Markers of stromal activation entirely surrounded pancreatic intraepithelial neoplasias in KPC/Cdh11+/+ mice and incompletely in KPC/Cdh11+/- and KPC/Cdh11-/- mice, whose lesions also contained fewer FOXP3+ cells in the tumor center. Compared with pancreatic tumors in KPC/Cdh11+/+ mice, tumors of KPC/Cdh11+/- mice had increased markers of antigen processing and presentation; more lymphocytes and associated cytokines; decreased extracellular matrix components; and reductions in markers and cytokines associated with immunosuppression. Administration of the PD1 antibody did not prolong survival of KPC mice with 0, 1, or 2 alleles of Cdh11. Gemcitabine extended survival of KPC/Cdh11+/- and KPC/Cdh11-/- mice only or reduced subcutaneous tumor growth in mT3 engrafted Cdh11+/+ mice when given in combination with the CDH11 antibody. A small molecule inhibitor of CDH11 reduced growth of pre-established mT3 subcutaneous tumors only if T and B cells were present in mice. CONCLUSIONS: Knockout or inhibition of CDH11, which is expressed by CAFs in the pancreatic tumor stroma, reduces growth of pancreatic tumors, increases their response to gemcitabine, and significantly extends survival of mice. CDH11 promotes immunosuppression and extracellular matrix deposition, and might be developed as a therapeutic target for pancreatic cancer.


Cadherins/metabolism , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/immunology , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/immunology , Animals , Cadherins/antagonists & inhibitors , Cadherins/genetics , Cancer-Associated Fibroblasts/immunology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/surgery , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Disease Models, Animal , Disease Progression , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Extracellular Matrix/immunology , Extracellular Matrix/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Metallothionein 3 , Mice , Mice, Knockout , Pancreas/cytology , Pancreas/immunology , Pancreas/pathology , Pancreas/surgery , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/surgery , Pancreaticoduodenectomy , Tumor Escape/drug effects , Tumor Escape/genetics , Tumor Escape/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Gemcitabine
18.
Hypertension ; 76(6): 1924-1934, 2020 12.
Article En | MEDLINE | ID: mdl-33040621

Acute kidney injury (AKI) causes multiple organ dysfunction. Here, we identify a possible mechanism that can drive brain vessel injury after AKI. We induced 30-minute bilateral renal ischemia-reperfusion injury in C57Bl/6 mice and isolated brain microvessels and macrovessels 24 hours or 1 week later to test their responses to vasoconstrictors and found that after AKI brain vessels were sensitized to Ang II (angiotensin II). Upregulation of FGF2 (fibroblast growth factor 2) and FGFBP1 (FGF binding protein 1) expression in both serum and kidney tissue after AKI suggested a potential contribution to the vascular sensitization. Administration of FGF2 and FGFBP1 proteins to isolated healthy brain vessels mimicked the sensitization to Ang II after AKI. Brain vessels in Fgfbp1-/- AKI mice failed to induce Ang II sensitization. Complementary to this, systemic treatment with the clinically used FGF receptor kinase inhibitor BGJ398 (Infigratinib) reversed the AKI-induced brain vascular sensitization to Ang II. All these findings lead to the conclusion that FGFBP1 is especially necessary for AKI-mediated brain vascular sensitization to Ang II and inhibitors of FGFR pathway may be beneficial in preventing AKI-induced brain vessel injury.


Acute Kidney Injury/physiopathology , Angiotensin II/pharmacology , Brain/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Mesenteric Arteries/drug effects , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Animals , Brain/blood supply , Intercellular Signaling Peptides and Proteins/genetics , Mesenteric Arteries/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Phenylurea Compounds/pharmacology , Pyrimidines/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology , Vasoconstrictor Agents/pharmacology
19.
J Vis Exp ; (160)2020 06 23.
Article En | MEDLINE | ID: mdl-32658183

Significant progress has been made in treating cancer with immunotherapy, although a large number of cancers remain resistant to treatment. A limited number of assays allow for direct monitoring and mechanistic insights into the interactions between tumor and immune cells, amongst which, T-cells play a significant role in executing the cytotoxic response of the adaptive immune system to cancer cells. Most assays are based on two-dimensional (2D) co-culture of cells due to the relative ease of use but with limited representation of the invasive growth phenotype, one of the hallmarks of cancer cells. Current three-dimensional (3D) co-culture systems either require special equipment or separate monitoring for invasion of co-cultured cancer cells and interacting T-cells. Here we describe an approach to simultaneously monitor the invasive behavior in 3D of cancer cell spheroids and T-cell cytotoxicity in co-culture. Spheroid formation is driven by enhanced cell-cell interactions in scaffold-free agarose microwell casts with U-shaped bottoms. Both T-cell co-culture and cancer cell invasion into type I collagen matrix are performed within the microwells of the agarose casts without the need to transfer the cells, thus maintaining an intact 3D co-culture system throughout the assay. The collagen matrix can be separated from the agarose cast, allowing for immunofluorescence (IF) staining and for confocal imaging of cells. Also, cells can be isolated for further growth or subjected to analyses such as for gene expression or fluorescence activated cell sorting (FACS). Finally, the 3D co-culture can be analyzed by immunohistochemistry (IHC) after embedding and sectioning. Possible modifications of the assay include altered compositions of the extracellular matrix (ECM) as well as the inclusion of different stromal or immune cells with the cancer cells.


Coculture Techniques/methods , T-Lymphocytes, Cytotoxic/cytology , Cell Communication , Cell Line, Tumor , Collagen Type I/metabolism , Extracellular Matrix/metabolism , Humans , Neoplasm Invasiveness , Spheroids, Cellular/pathology
20.
EMBO Rep ; 21(1): e48741, 2020 01 07.
Article En | MEDLINE | ID: mdl-31788936

Transcription factors critical for the transition of normal breast epithelium to ductal carcinoma in situ (DCIS) and invasive breast cancer are not clearly defined. Here, we report that the expression of a subset of YAP-activated and YAP-repressed genes in normal mammary and early-stage breast cancer cells is dependent on the nuclear co-activator AIB1. Gene expression, sequential ChIP, and ChIP-seq analyses show that AIB1 and YAP converge upon TEAD for transcriptional activation and repression. We find that AIB1-YAP repression of genes at the 1q21.3 locus is mediated by AIB1-dependent recruitment of ANCO1, a tumor suppressor whose expression is progressively lost during breast cancer progression. Reducing ANCO1 reverts AIB1-YAP-dependent repression, increases cell size, and enhances YAP-driven aberrant 3D growth. Loss of endogenous ANCO1 occurs during DCIS xenograft progression, a pattern associated with poor prognosis in human breast cancer. We conclude that increased expression of AIB1-YAP co-activated targets coupled with a loss of normal ANCO1 repression is critical to patterns of gene expression that mediate malignant progression of early-stage breast cancer.


Breast Neoplasms , Nuclear Receptor Coactivator 3/genetics , Repressor Proteins/genetics , Breast , Breast Neoplasms/genetics , Humans , Nuclear Receptor Coactivator 3/metabolism
...