Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 35(7): 2504-2526, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-36911990

RESUMEN

Filamentous (oomycete and fungal) plant pathogens deliver cytoplasmic effector proteins into host cells to facilitate disease. How RXLR effectors from the potato late blight pathogen Phytophthora infestans enter host cells is unknown. One possible route involves clathrin-mediated endocytosis (CME). Transient silencing of NbCHC, encoding clathrin heavy chain, or the endosome marker gene NbAra6 encoding a Rab GTPase in the model host Nicotiana benthamiana, attenuated P. infestans infection and reduced translocation of RXLR effector fusions from transgenic pathogen strains into host cells. By contrast, silencing PP1c isoforms, susceptibility factors not required for endocytosis, reduced infection but did not attenuate RXLR effector uptake. Endosome enrichment by ultracentrifugation and sucrose gradient fractionation revealed co-localization of RXLR effector Pi04314-RFP with clathrin-coated vesicles. Immunopurification of clathrin- and NbAra6-associated vesicles during infection showed that RXLR effectors Pi04314-RFP and AvrBlb1-RFP, but not apoplastic effector PiSCR74-RFP, were co-immunoprecipitated during infection with pathogen strains secreting these effectors. Tandem mass spectrometry analyses of proteins co-immunoprecipitated with NbAra6-GFP during infection revealed enrichment of host proteins associated with endocytic vesicles alongside multiple pathogen RXLR effectors, but not apoplastic effectors, including PiSCR74, which do not enter host cells. Our data show that the uptake of P. infestans RXLR effectors into plant cells occurs via CME.


Asunto(s)
Phytophthora infestans , Plantas , Transporte Biológico , Nicotiana/genética , Nicotiana/microbiología , Endocitosis , Enfermedades de las Plantas/microbiología
2.
G3 (Bethesda) ; 11(11)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34849788

RESUMEN

Species of Phytophthora, plant pathogenic eukaryotic microbes, can cause disease on many tree species. Genome sequencing of species from this genus has helped to determine components of their pathogenicity arsenal. Here, we sequenced genomes for two widely distributed species, Phytophthora pseudosyringae and Phytophthora boehmeriae, yielding genome assemblies of 49 and 40 Mb, respectively. We identified more than 270 candidate disease promoting RXLR effector coding genes for each species, and hundreds of genes encoding candidate plant cell wall degrading carbohydrate active enzymes (CAZymes). These data boost genome sequence representation across the Phytophthora genus, and form resources for further study of Phytophthora pathogenesis.


Asunto(s)
Phytophthora , Genoma , Phytophthora/genética , Enfermedades de las Plantas , Plantas , Árboles , Virulencia
3.
Science ; 373(6556): 774-779, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34385392

RESUMEN

The oomycete Phytophthora infestans is a damaging crop pathogen and a model organism to study plant-pathogen interactions. We report the discovery of a family of copper-dependent lytic polysaccharide monooxygenases (LPMOs) in plant pathogenic oomycetes and its role in plant infection by P. infestans We show that LPMO-encoding genes are up-regulated early during infection and that the secreted enzymes oxidatively cleave the backbone of pectin, a charged polysaccharide in the plant cell wall. The crystal structure of the most abundant of these LPMOs sheds light on its ability to recognize and degrade pectin, and silencing the encoding gene in P. infestans inhibits infection of potato, indicating a role in host penetration. The identification of LPMOs as virulence factors in pathogenic oomycetes opens up opportunities in crop protection and food security.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Pectinas/metabolismo , Phytophthora infestans/enzimología , Enfermedades de las Plantas/parasitología , Solanum lycopersicum/parasitología , Solanum tuberosum/parasitología , Cobre , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Oxidación-Reducción , Phytophthora infestans/genética , Phytophthora infestans/patogenicidad , Hojas de la Planta/parasitología , Polisacáridos/metabolismo , Conformación Proteica , Dominios Proteicos , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
Mol Plant Pathol ; 22(8): 954-968, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34018655

RESUMEN

Phytophthora species cause some of the most serious diseases of trees and threaten forests in many parts of the world. Despite the generation of genome sequence assemblies for over 10 tree-pathogenic Phytophthora species and improved detection methods, there are many gaps in our knowledge of how these pathogens interact with their hosts. To facilitate cell biology studies of the infection cycle we examined whether the tree pathogen Phytophthora kernoviae could infect the model plant Nicotiana benthamiana. We transformed P. kernoviae to express green fluorescent protein (GFP) and demonstrated that it forms haustoria within infected N. benthamiana cells. Haustoria were also formed in infected cells of natural hosts, Rhododendron ponticum and European beech (Fagus sylvatica). We analysed the transcriptome of P. kernoviae in cultured mycelia, spores, and during infection of N. benthamiana, and detected 12,559 transcripts. Of these, 1,052 were predicted to encode secreted proteins, some of which may function as effectors to facilitate disease development. From these, we identified 87 expressed candidate RXLR (Arg-any amino acid-Leu-Arg) effectors. We transiently expressed 12 of these as GFP fusions in N. benthamiana leaves and demonstrated that nine significantly enhanced P. kernoviae disease progression and diversely localized to the cytoplasm, nucleus, nucleolus, and plasma membrane. Our results show that N. benthamiana can be used as a model host plant for studying this tree pathogen, and that the interaction likely involves suppression of host immune responses by RXLR effectors. These results establish a platform to expand the understanding of Phytophthora tree diseases.


Asunto(s)
Phytophthora , Phytophthora/genética , Enfermedades de las Plantas , Nicotiana/genética , Transcriptoma/genética , Árboles
5.
Plant Physiol ; 180(1): 571-581, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782963

RESUMEN

To be successful plant pathogens, microbes use "effector proteins" to manipulate host functions to their benefit. Identifying host targets of effector proteins and characterizing their role in the infection process allow us to better understand plant-pathogen interactions and the plant immune system. Yeast two-hybrid analysis and coimmunoprecipitation were used to demonstrate that the Phytophthora infestans effector AVIRULENCE 2 (PiAVR2) interacts with all three BRI1-SUPPRESSOR1-like (BSL) family members from potato (Solanum tuberosum). Transient expression of BSL1, BSL2, and BSL3 enhanced P. infestans leaf infection. BSL1 and BSL3 suppressed INFESTIN 1 elicitin-triggered cell death, showing that they negatively regulate immunity. Virus-induced gene silencing studies revealed that BSL2 and BSL3 are required for BSL1 stability and show that basal levels of immunity are increased in BSL-silenced plants. Immune suppression by BSL family members is dependent on the brassinosteroid-responsive host transcription factor CIB1/HBI1-like 1. The P. infestans effector PiAVR2 targets all three BSL family members in the crop plant S. tuberosum These phosphatases, known for their role in growth-promoting brassinosteroid signaling, all support P. infestans virulence and thus can be regarded as susceptibility factors in late blight infection.


Asunto(s)
Phytophthora infestans/patogenicidad , Inmunidad de la Planta , Proteínas de Plantas/inmunología , Factores de Virulencia/metabolismo , Silenciador del Gen , Interacciones Huésped-Patógeno , Phytophthora infestans/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/microbiología , Factores de Virulencia/genética
6.
mBio ; 9(4)2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154258

RESUMEN

The oomycete potato blight pathogen Phytophthora infestans secretes a diverse set of proteins to manipulate host plant immunity. However, there is limited knowledge about how and where they are secreted during infection. Here we used the endoplasmic reticulum (ER)-to-Golgi secretion pathway inhibitor brefeldin A (BFA) in combination with liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) to identify extracellular proteins from P. infestans that were conventionally secreted from in vitro-cultured hyphae. We identified 19 proteins with predicted signal peptides that potentially influence plant interactions for which secretion was attenuated by BFA. In addition to inhibition by the apoplastic effector EPIC1, a cysteine protease inhibitor, we show that secretion of the cell wall-degrading pectinesterase enzyme PE1 and the microbe-associated molecular pattern (MAMP)-like elicitin INF4 was inhibited by BFA in vitro and in planta, demonstrating that these proteins are secreted by the conventional, Golgi-mediated pathway. For comparison, secretion of a cytoplasmic RXLR (Arg-[any amino acid]-Leu-Arg) effector, Pi22926, was not inhibited by BFA. During infection, whereas INF4 accumulated outside the plant cell, RXLR effector Pi22926 entered the plant cell and accumulated in the nucleus. The P. infestans effectors, the PE1 enzyme, and INF4 were all secreted from haustoria, pathogen structures that penetrate the plant cell wall to form an intimate interaction with the host plasma membrane. Our findings show the haustorium to be a major site of both conventional and nonconventional secretion of proteins with diverse functions during infection.IMPORTANCE There are many different classes of proteins secreted from Phytophthora infestans that may influence or facilitate infection. Elucidating where and how they are secreted during infection is an important step toward developing methods to control their delivery processes. We used an inhibitor of conventional secretion to identify the following different classes of infection-associated extracellular proteins: cell wall-degrading and cell wall-modifying enzymes, microbe-associated molecular pattern-like proteins that may elicit immune responses, and apoplastic effectors that are predicted to suppress immunity. In contrast, secretion of a cytoplasmic effector that is translocated into host cells is nonconventional, as it is insensitive to inhibitor treatment. This evidence further supports the finding that proteins that are active in the apoplast and effector proteins that are active in the host cytoplasm are differentially secreted by P. infestans Critically, it demonstrates that a disease-specific developmental structure, the haustorium, is a major secretion site for diverse protein classes during infection.


Asunto(s)
Proteínas Fúngicas/metabolismo , Phytophthora infestans/metabolismo , Factores de Virulencia/metabolismo , Antifúngicos/metabolismo , Brefeldino A/metabolismo , Cromatografía Liquida , Hifa/efectos de los fármacos , Hifa/metabolismo , Phytophthora infestans/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Espectrometría de Masas en Tándem
7.
New Phytol ; 216(1): 205-215, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28758684

RESUMEN

The potato blight pathogen Phytophthora infestans secretes effector proteins that are delivered inside (cytoplasmic) or can act outside (apoplastic) plant cells to neutralize host immunity. Little is known about how and where effectors are secreted during infection, yet such knowledge is essential to understand and combat crop disease. We used transient Agrobacterium tumefaciens-mediated in planta expression, transformation of P. infestans with fluorescent protein fusions and confocal microscopy to investigate delivery of effectors to plant cells during infection. The cytoplasmic effector Pi04314, expressed as a monomeric red fluorescent protein (mRFP) fusion protein with a signal peptide to secrete it from plant cells, did not passively re-enter the cells upon secretion. However, Pi04314-mRFP expressed in P. infestans was translocated from haustoria, which form intimate interactions with plant cells, to accumulate at its sites of action in the host nucleus. The well-characterized apoplastic effector EPIC1, a cysteine protease inhibitor, was also secreted from haustoria. EPIC1 secretion was inhibited by brefeldin A (BFA), demonstrating that it is delivered by conventional Golgi-mediated secretion. By contrast, Pi04314 secretion was insensitive to BFA treatment, indicating that the cytoplasmic effector follows an alternative route for delivery into plant cells. Phytophthora infestans haustoria are thus sites for delivery of both apoplastic and cytoplasmic effectors during infection, following distinct secretion pathways.


Asunto(s)
Citoplasma/metabolismo , Phytophthora infestans/metabolismo , Vías Secretoras , Brefeldino A/farmacología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citoplasma/efectos de los fármacos , Recuperación de Fluorescencia tras Fotoblanqueo , Phytophthora infestans/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Células Vegetales/microbiología , Proteínas Recombinantes de Fusión/metabolismo , Vías Secretoras/efectos de los fármacos , Nicotiana/microbiología
8.
Plant Physiol ; 174(1): 356-369, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28270626

RESUMEN

An emerging area in plant research focuses on antagonism between regulatory systems governing growth and immunity. Such cross talk represents a point of vulnerability for pathogens to exploit. AVR2, an RXLR effector secreted by the potato blight pathogen Phytophthora infestans, interacts with potato BSL1, a putative phosphatase implicated in growth-promoting brassinosteroid (BR) hormone signaling. Transgenic potato (Solanum tuberosum) plants expressing the effector exhibit transcriptional and phenotypic hallmarks of overactive BR signaling and show enhanced susceptibility to P. infestans Microarray analysis was used to identify a set of BR-responsive marker genes in potato, all of which are constitutively expressed to BR-induced levels in AVR2 transgenic lines. One of these genes was a bHLH transcription factor, designated StCHL1, homologous to AtCIB1 and AtHBI1, which are known to facilitate antagonism between BR and immune responses. Transient expression of either AVR2 or CHL1 enhanced leaf colonization by P. infestans and compromised immune cell death activated by perception of the elicitin Infestin1 (INF1). Knockdown of CHL1 transcript using Virus-Induced Gene Silencing (VIGS) reduced colonization of P. infestans on Nicotiana benthamiana Moreover, the ability of AVR2 to suppress INF1-triggered cell death was attenuated in NbCHL1-silenced plants, indicating that NbCHL1 was important for this effector activity. Thus, AVR2 exploits cross talk between BR signaling and innate immunity in Solanum species, representing a novel, indirect mode of innate immune suppression by a filamentous pathogen effector.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Phytophthora infestans/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Brasinoesteroides/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Phytophthora infestans/genética , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Regulación hacia Arriba , Factores de Virulencia/genética
9.
Science ; 341(6150): 1103-6, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23950498

RESUMEN

Lignin is a major component of plant secondary cell walls. Here we describe caffeoyl shikimate esterase (CSE) as an enzyme central to the lignin biosynthetic pathway. Arabidopsis thaliana cse mutants deposit less lignin than do wild-type plants, and the remaining lignin is enriched in p-hydroxyphenyl units. Phenolic metabolite profiling identified accumulation of the lignin pathway intermediate caffeoyl shikimate in cse mutants as compared to caffeoyl shikimate levels in the wild type, suggesting caffeoyl shikimate as a substrate for CSE. Accordingly, recombinant CSE hydrolyzed caffeoyl shikimate into caffeate. Associated with the changes in lignin, the conversion of cellulose to glucose in cse mutants increased up to fourfold as compared to that in the wild type upon saccharification without pretreatment. Collectively, these data necessitate the revision of currently accepted models of the lignin biosynthetic pathway.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Hidrolasas de Éster Carboxílico/química , Lignina/biosíntesis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Glucosa/química , Redes y Vías Metabólicas , Mutación , Ácido Shikímico/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA