Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 35(1): 26, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683259

RESUMEN

OBJECTIVE: Aortic valve neocuspidization (AVNeo) using autologous pericardium is a promising technique. Expected advantages are reduced immune response, appropriate biomechanics and lower treatment expenses. Nevertheless, autologous pericardium can be affected by patient's age and comorbidities. Usually, glutaraldehyde (GA) - fixed bovine pericardium is the basic material for aortic valve prostheses, easy available and carefully pre-examined in a standardized fabrication process. Aim of the study is the verification of autologous pericardial tissue homogeneity by analysing tissue thickness, biomechanics and extracellular matrix (ECM) composition. METHODS: Segments of human GA-fixed pericardium selected by the surgeon based on visual criteria for cusp pre-cut and remaining after surgical AV replacement were investigated in comparison to bovine standard tissue treated equivalently. Pericardium sampling was performed at up to three positions of each sutured cusp for histological or biomechanical analysis, according to tissue availability. RESULTS AND CONCLUSIONS: Human pericardia exhibited a higher heterogeneity in collagen content, density of vessel structures and elastic moduli. Thickness, vessel density and collagen and elastin content differed significantly between the species. In contrast, significant interindividual differences were detected in most properties investigated for human pericardial samples but only for tissue thickness in bovine tissues. Higher heterogeneity of human pericardium, differing vessel and collagen content compared to bovine state-of-the-art material might be detrimental for long term AV functionality or deterioration and have to be intensely investigated in patients follow up after autologous cusp replacement.


Asunto(s)
Válvula Aórtica , Bioprótesis , Prótesis Valvulares Cardíacas , Pericardio , Bovinos , Humanos , Válvula Aórtica/cirugía , Animales , Fenómenos Biomecánicos , Masculino , Femenino , Anciano , Matriz Extracelular/química , Persona de Mediana Edad , Colágeno/química , Glutaral/química , Ensayo de Materiales , Implantación de Prótesis de Válvulas Cardíacas/métodos
2.
J Med Internet Res ; 25: e50158, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38117545

RESUMEN

Digital health tools, platforms, and artificial intelligence- or machine learning-based clinical decision support systems are increasingly part of health delivery approaches, with an ever-greater degree of system interaction. Critical to the successful deployment of these tools is their functional integration into existing clinical routines and workflows. This depends on system interoperability and on intuitive and safe user interface design. The importance of minimizing emergent workflow stress through human factors research and purposeful design for integration cannot be overstated. Usability of tools in practice is as important as algorithm quality. Regulatory and health technology assessment frameworks recognize the importance of these factors to a certain extent, but their focus remains mainly on the individual product rather than on emergent system and workflow effects. The measurement of performance and user experience has so far been performed in ad hoc, nonstandardized ways by individual actors using their own evaluation approaches. We propose that a standard framework for system-level and holistic evaluation could be built into interacting digital systems to enable systematic and standardized system-wide, multiproduct, postmarket surveillance and technology assessment. Such a system could be made available to developers through regulatory or assessment bodies as an application programming interface and could be a requirement for digital tool certification, just as interoperability is. This would enable health systems and tool developers to collect system-level data directly from real device use cases, enabling the controlled and safe delivery of systematic quality assessment or improvement studies suitable for the complexity and interconnectedness of clinical workflows using developing digital health technologies.


Asunto(s)
Inteligencia Artificial , Sistemas de Apoyo a Decisiones Clínicas , Humanos , Salud Digital , Algoritmos , Aprendizaje Automático
3.
Biomater Adv ; 147: 213328, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764200

RESUMEN

Hemocompatibility tuning was adopted to explore and refine an innovative, GA-free preparation strategy combining decellularization, riboflavin/UV crosslinking, and low-energy electron irradiation (SULEEI) procedure. A SULEEI-protocol was established to avoid GA-dependent deterioration that results in insufficient long-term aortic valve bioprosthesis durability. Final SULEEI-pericardium, intermediate steps and GA-fixed reference pericardium were exposed in vitro to fresh human whole blood to elucidate effects of preparation parameters on coagulation and inflammation activation and tissue histology. The riboflavin/UV crosslinking step showed to be less efficient in inactivating extracellular matrix (ECM) protein activity than the GA fixation, leading to tissue-factor mediated blood clotting. Intensifying the riboflavin/UV crosslinking with elevated riboflavin concentration and dextran caused an enhanced activation of the complement system. Yet activation processes induced by the previous protocol steps were quenched with the final electron beam treatment step. An optimized SULEEI protocol was developed using an intense and extended, trypsin-containing decellularization step to inactivate tissue factor and a dextran-free, low riboflavin, high UV crosslinking step. The innovative and improved GA-free SULEEI-preparation protocol results in low coagulant and low inflammatory bovine pericardium for surgical application.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Animales , Bovinos , Humanos , Glutaral/metabolismo , Glutaral/farmacología , Electrones , Pericardio/metabolismo , Pericardio/patología
4.
Life (Basel) ; 12(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36556400

RESUMEN

The degeneration of heart valve bioprostheses due to calcification processes is caused by the intercalation of calciumhydroxyapatite in pericardium collagen bundles. Variations of the protein secondary structure of biomaterials according to preparation are relevant for this mineralization process and thus the structural characterization of innovative bioprostheses materials is of great importance. The gold standard for prostheses preparation is glutaraldehyde (GA)-fixation of bovine pericardium that adversely promotes calcification. The novel GA-free SULEEI-treatment of bovine pericardium includes decellularization, UV-crosslinking, and electron beam sterilization. The aim of this study is the structural characterization of SULEEI-treated and GA-fixed bovine pericardium. IR spectroscopic imaging combined with multivariate data and curve fit analysis was applied to investigate the amide I and amide II regions of SULEEI-treated and GA-fixed samples. The spectroscopic images of GA-fixed pericardial tissue exhibited a generally high content of amine groups and side chains providing nucleation points for calcification processes. In contrast, in SULEEI-treated tissue, the typical α-helical structure was retained and was supposed to be less prone to deterioration.

5.
Clin Hemorheol Microcirc ; 79(1): 179-192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34487036

RESUMEN

BACKGROUND: Heart valves are exposed to a highly dynamic environment and underlie high tensile and shear forces during opening and closing. Therefore, analysis of mechanical performance of novel heart valve bioprostheses materials, like SULEEI-treated bovine pericardium, is essential and usually carried out by uniaxial tensile tests. Nevertheless, major drawbacks are the unidirectional strain, which does not reflect the in vivo condition and the deformation of the sample material. An alternative approach for measurement of biomechanical properties is offered by Brillouin confocal microscopy (BCM), a novel, non-invasive and three-dimensional method based on the interaction of light with acoustic waves. OBJECTIVE: BCM is a powerful tool to determine viscoelastic tissue properties and is, for the first time, applied to characterize novel biological graft materials, such as SULEEI-treated bovine pericardium. Therefore, the method has to be validated as a non-invasive alternative to conventional uniaxial tensile tests. METHODS: Vibratome sections of SULEEI-treated bovine pericardium (decellularized, riboflavin/UV-cross-linked and low-energy electron irradiated) as well as native and GA-fixed controls (n = 3) were analyzed by BCM. In addition, uniaxial tensile tests were performed on equivalent tissue samples and Young's modulus as well as length of toe region were analyzed from stress-strain diagrams. The structure of the extracellular matrix (ECM), especially collagen and elastin, was investigated by multiphoton microscopy (MPM). RESULTS: SULEEI-treated pericardium exhibited a significantly higher Brillouin shift and hence higher tissue stiffness in comparison to native and GA-fixed controls (native: 5.6±0.2 GHz; GA: 5.5±0.1 GHz; SULEEI: 6.3±0.1 GHz; n = 3, p < 0.0001). Similarly, a significantly higher Young's modulus was detected in SULEEI-treated pericardia in comparison to native tissue (native: 30.0±10.4 MPa; GA: 31.8±10.7 MPa; SULEEI: 42.1±7.0 MPa; n = 3, p = 0.027). Native pericardia showed wavy and non-directional collagen fibers as well as thin, linear elastin fibers generating a loose matrix. The fibers of GA-fixed and SULEEI-treated pericardium were aligned in one direction, whereat the SULEEI-sample exhibited a much denser matrix. CONCLUSION: BCM is an innovative and non-invasive method to analyze elastic properties of novel pericardial graft materials with special mechanical requirements, like heart valve bioprostheses.


Asunto(s)
Bioprótesis , Procedimientos Quirúrgicos Cardíacos , Animales , Fenómenos Biomecánicos , Bovinos , Ensayo de Materiales , Microscopía Confocal , Pericardio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...