Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Parkinsons Dis ; 14(4): 667-679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669557

RESUMEN

Background: Misfolded α-synuclein can be detected in blood samples of Parkinson's disease (PD) patients by a seed amplification assay (SAA), but the association with disease duration is not clear, yet. Objective: In the present study we aimed to elucidate whether seeding activity of misfolded α-synuclein derived from neuronal exosomes in blood is associated with PD diagnosis and disease duration. Methods: Cross-sectional samples of PD patients were analyzed and compared to samples of age- and gender-matched healthy controls using a blood-based SAA. Presence of α-synuclein seeding activity and differences in seeding parameters, including fluorescence response (in arbitrary units) at the end of the amplification assay (F60) were analyzed. Additionally, available PD samples collected longitudinally over 5-9 years were included. Results: In the cross-sectional dataset, 79 of 80 PD patients (mean age 69 years, SD = 8; 56% male) and none of the healthy controls (n = 20, mean age 70 years, SD = 10; 55% male) showed seeding activity (sensitivity 98.8%). When comparing subgroups divided by disease duration, longer disease duration was associated with lower α-synuclein seeding activity (F60: p < 0.001). In the longitudinal analysis 10/11 patients showed a gradual decrease of α-synuclein seeding activity over time. Conclusions: This study confirms the high sensitivity of the blood-based α-synuclein SAA applied here. The negative association of α-synuclein seeding activity in blood with disease duration makes this parameter potentially interesting as biomarker for future studies on the pathophysiology of disease progression in PD, and for biologically oriented trials in this field.


Asunto(s)
Exosomas , Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/sangre , alfa-Sinucleína/metabolismo , Masculino , Femenino , Exosomas/metabolismo , Anciano , Persona de Mediana Edad , Estudios Transversales , Estudios Longitudinales , Neuronas/metabolismo , Neuronas/patología , Biomarcadores/sangre , Progresión de la Enfermedad
3.
Mov Disord ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651526

RESUMEN

BACKGROUND: Identifying individuals with Parkinson's disease (PD) already in the prodromal phase of the disease has become a priority objective for opening a window for early disease-modifying therapies. OBJECTIVE: The aim was to evaluate a blood-based α-synuclein seed amplification assay (α-syn SAA) as a novel biomarker for diagnosing PD in the prodromal phase. METHODS: In the TREND study (University of Tuebingen) biennial blood samples of n = 1201 individuals with/without increased risk for PD were taken prospectively over 4 to 10 years. We retrospectively analyzed blood samples of 12 participants later diagnosed with PD during the study to detect and amplify pathological α-syn conformers derived from neuronal extracellular vesicles using (1) immunoblot analyses with an antibody against these conformers and (2) an α-syn-SAA. Additionally, blood samples of n = 13 healthy individuals from the TREND cohort and n = 20 individuals with isolated rapid eye movement sleep behavior disorder (iRBD) from the University Hospital Cologne were analyzed. RESULTS: All individuals with PD showed positive immunoblots and a positive α-syn SAA at the time of diagnosis. Moreover, all PD patients showed a positive α-syn SAA 1 to 10 years before clinical diagnosis. In the iRBD cohort, 30% showed a positive α-syn SAA. All healthy controls had a negative SAA. CONCLUSIONS: We here demonstrate the possibility to detect and amplify pathological α-syn conformers in peripheral blood up to 10 years before the clinical diagnosis of PD in individuals with and without iRBD. The findings of this study indicate that this blood-based α-syn SAA assay has the potential to serve as a diagnostic biomarker for prodromal PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

4.
Sci Rep ; 14(1): 4301, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383687

RESUMEN

Essential tremor (ET) amplitude is modulated by visual feedback during target driven movements and in a grip force task. It has not been examined yet whether visual feedback exclusively modulates target force tremor amplitude or if other afferent inputs like auditory sensation has a modulatory effect on tremor amplitude as well. Also, it is unknown whether the enhanced sensory feedback causes an increase of arousal in persons with ET (p-ET). We hypothesized that (1) amplitude of tremor is modulated by variation of auditory feedback in the absence of visual feedback in a force tremor paradigm; (2) increase of tremor amplitude coincides with pupillary size as a measure of arousal. 14 p-ET and 14 matched healthy controls (HC) conducted a computer-based experiment in which they were asked to match a target force on a force sensor using their thumb and index finger. The force-induced movement was fed back to the participant visually, auditory or by a combination of both. Results showed a comparable deviation from the target force (RMSE) during the experiment during all three sensory feedback modalities. The ANOVA revealed an effect of the high vs. low feedback condition on the tremor severity (Power 4-12 Hz) for the visual- and also for the auditory feedback condition in p-ET. Pupillometry showed a significantly increased pupil diameter during the auditory involved high feedback conditions compared to the low feedback conditions in p-ET. Our findings suggest that action tremor in ET is firstly modulated not only by visual feedback but also by auditory feedback in a comparable manner. Therefore, tremor modulation seems to be modality independent. Secondly, high feedback was associated with a significant pupil dilation, possibly mirroring an increased arousal/perceived effort.


Asunto(s)
Temblor Esencial , Temblor , Humanos , Retroalimentación Sensorial , Movimiento , Dedos
5.
Cerebellum ; 22(5): 925-937, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36085397

RESUMEN

Essential tremor (ET) is a progressive movement disorder whose pathophysiology is not fully understood. Current evidence supports the view that the cerebellum is critically involved in the genesis of the tremor in ET. However, it is still unknown whether cerebellar dysfunction affects not only the control of current movements but also the prediction of future movements through dynamic adaptation toward a changed environment. Here, we tested the capacity of 28 patients with ET to adapt in a visuomotor adaptation task known to depend on intact cerebellar function. We found specific impairments in that task compared to age-matched healthy controls. Adaptation to the visual perturbation was disrupted in ET patients, while de-adaptation, the phase after abrupt removal of the perturbation, developed similarly to control subjects. Baseline tremor-independent motor performance was as well similar to healthy controls, indicating that adaptation deficits in ET patients were not rooted in an inability to perform goal-directed movements. There was no association between clinical severity scores of ET and early visuomotor adaptation abilities. These results provide further evidence that the cerebellum is dysfunctional in ET.


Asunto(s)
Temblor Esencial , Humanos , Desempeño Psicomotor/fisiología , Temblor , Cerebelo/fisiología , Movimiento/fisiología , Adaptación Fisiológica/fisiología
6.
J Parkinsons Dis ; 12(8): 2531-2541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278359

RESUMEN

BACKGROUND: Orthostatic hypotension (OH) in Parkinson's disease (PD) is frequent and associated with impairments in quality of life and reduced activities of daily living. Abdominal binders (AB) and compression stockings (CS) have been shown to be effective non-pharmacological treatment options. OBJECTIVE: Here, we investigate the effect of AB versus CS on physical activity using a digital mobility outcome (sit to stand [STS] frequency) collected in the usual environment as a primary endpoint. METHODS: We enrolled 16 PD patients with at least moderate symptomatic OH. In a randomized, single-blinded, controlled, crossover design, participants were assessed without OH treatment over 1 week (baseline), then were given AB or CS for 1 week and subsequently switched to the other treatment arm. The primary outcome was the number of real-life STS movements per hour as assessed with a lower back sensor. Secondary outcomes included real-life STS duration, mean/systolic/diastolic blood pressure drop (BPD), orthostatic hypotension questionnaire (OHQ), PD quality of life (PDQ-39), autonomic symptoms (SCOPA-AUT), non-motor symptoms (NMSS), MDS-UPDRS, and activities of daily living (ADL/iADL). RESULTS: Real-life STS frequency on CS was 4.4±4.1 per hour compared with 3.6±2.2 on AB and 3.6±1.8 without treatment (p = 1.0). Concerning the secondary outcomes, NMSS showed significant improvement with CS and AB. OHQ and SCOPA-AUT improved significantly with AB but not CS, and mean BPD drop worsened with CS but not AB. Mean STS duration, PDQ-39, MDS-UPDRS, ADL, and iADL did not significantly change. CONCLUSION: Both AB and CS therapies do not lead to a significant change of physical activity in PD patients with at least moderate symptomatic OH. Secondary results speak for an effect of both therapies concerning non-motor symptoms, with superiority of AB therapy over CS therapy.


Asunto(s)
Hipotensión Ortostática , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/diagnóstico , Hipotensión Ortostática/terapia , Hipotensión Ortostática/complicaciones , Proyectos Piloto , Estudios Cruzados , Calidad de Vida , Actividades Cotidianas , Extremidad Inferior
7.
J Geriatr Cardiol ; 19(9): 660-674, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36284678

RESUMEN

BACKGROUND: Individuals with heart failure (HF) frequently experience limitations in mobility, but specific aspects of these limitations are not well understood. This study investigated the association of HF severity, based on the New York Heart Association (NYHA) classes, with digital mobility outcomes (DMOs) and handgrip strength in older inpatients with HF. METHODS: For this explorative analysis, hospital admission and discharge data from an ongoing, prospective cohort study were used. The sample included older participants with HF and a sub-sample of heart-healthy individuals. Participants were equipped with a wearable inertial measurement unit (IMU) system during mobility performance (balancing, sit-to-stand transfer, walking). We analyzed the association between 17 DMOs and HF severity with multiple linear regression models. RESULTS: The total sample included 61 older participants (65-97 years of age, 55.7% female). Of all DMOs, only sway path in a semi-tandem stance position (m/s²) showed a relevant association with NYHA classes (admission: ß = -0.28, P = 0.09; discharge: ß = -0.39, P = 0.02). Handgrip strength showed a trend towards a significant association (admission: ß = -0.15, P = 0.10; discharge: ß = -0.15, P = 0.19). CONCLUSIONS: This is to our best knowledge the first analysis on the association of HF severity and IMU-based DMOs. Sway path and handgrip strength may be the most promising parameters for monitoring mobility aspects in treatment of HF.

8.
Front Neurol ; 13: 852725, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928127

RESUMEN

Introduction: It is well-known that, in Parkinson's disease (PD), executive function (EF) and motor deficits lead to reduced walking performance. As previous studies investigated mainly patients during the compensated phases of the disease, the aim of this study was to investigate the above associations in acutely hospitalized patients with PD. Methods: A total of seventy-four acutely hospitalized patients with PD were assessed with the delta Trail Making Test (ΔTMT, TMT-B minus TMT-A) and the Movement Disorder Society-revised version of the motor part of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS III). Walking performance was assessed with wearable sensors under single (ST; fast and normal pace) and dual-task (DT; walking and checking boxes as the motor secondary task and walking and subtracting seven consecutively from a given three-digit number as the cognitive secondary task) conditions over 20 m. Multiple linear regression and Bayes factor BF10 were performed for each walking parameter and their dual-task costs while walking (DTC) as dependent variables and also included ΔTMT, MDS-UPDRS III, age, and gender. Results: Under ST, significant negative effects of the use of a walking aid and MDS-UPDRS III on gait speed and at a fast pace on the number of steps were observed. Moreover, depending on the pace, the use of a walking aid, age, and gender affected step time variability. Under walking-cognitive DT, a resolved variance of 23% was observed in the overall model for step time variability DTC, driven mainly by age (ß = 0.26, p = 0.09). Under DT, no other significant effects could be observed. ΔTMT showed no significant associations with any of the walking conditions. Discussion: The results of this study suggest that, in acutely hospitalized patients with PD, reduced walking performance is mainly explained by the use of a walking aid, motor symptoms, age, and gender, and EF deficits surprisingly do not seem to play a significant role. However, these patients with PD should avoid walking-cognitive DT situations, as under this condition, especially step time variability, a parameter associated with the risk of falling in PD worsens.

9.
BMC Geriatr ; 22(1): 668, 2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-35963992

RESUMEN

BACKGROUND: Mobility deficits are highly prevalent among geriatric patients and have serious impact on quality of life, hospitalizations, and mortality. This study aims to capture predictors of mobility deficits in hospitalized geriatric patients using the International Classification of Functioning, Disability and Health (ICF) model as a framework. METHODS: Data were obtained from n = 397 patients (78 ± 7 years, 15 ± 7 ICD-11 diagnoses) on a geriatric ward at time of admission. Mobility was assessed using the Short Physical Performance Battery (SPPB) total score and gait, static balance and transfer subscores. Parameters from an extensive assessment including medical history, neuropsychological and motor examination, and questionnaires were assigned to the five components of the ICF model. Spearman's Correlation and multiple linear regression analyses were calculated to identify predictors for the SPPB total score and subscores. RESULTS: Use of walking aid, fear of falling (FOF, but not occurrence of previous falls), participation in society, ADL and grip strength were strongly associated with the SPPB total score and all subscores (p < .001). FOF and grip strength were significant predictors for the SPPB total score as well as for gait and transfer subscores. FOF also showed a strong association with the static balance subscore. The clinical parameters of the ICF model could only partially explain the variance in the SPPB total score (24%) and subscores (12-23%), with no parameter from the activities and participation component being significantly predictive. CONCLUSIONS: FOF and reduced grip strength are associated with mobility deficits in a hospitalized geriatric cohort. Further research should focus on interventions to reduce FOF and increase muscle strength in geriatric patients. Moreover, there is a need for ICF-based assessments instruments (especially in the activities and participation components) that allow a holistic view on mobility and further daily life-relevant health aspects in geriatric patients.


Asunto(s)
Accidentes por Caídas , Evaluación Geriátrica , Anciano , Miedo , Hospitalización , Humanos , Calidad de Vida
10.
Front Med (Lausanne) ; 9: 904364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35801210

RESUMEN

Background: Fear of falling (FOF) negatively affects health-related quality of life and is common in neurogeriatric patients, however, related parameters are not well understood. This study investigated the relationship between FOF, physical performance (as assessed with the Short Physical Performance Battery and its subscores) and other aspects of sarcopenia in a sample of hospitalized neurogeriatric patients. Methods: In 124 neurogeriatric patients, FOF was assessed with the Falls Efficacy Scale International (FES-I). Physical performance was measured using the Short Physical Performance Battery (SPPB) including walking duration, balance and five times sit-to-stand task (5xSST) subscores. Appendicular skeletal muscle mass (ASMM) was estimated with the cross-validated Sergi equation using Bioelectrical impedance analysis measures. The Depression im Alter-Skala (DIA-S) was used to assess depressive symptoms. Multiple regression models with FES-I score as outcome variable were computed using backward selection with AICc as selection criterion, including: (i) SPPB total score, ASMM/height2, grip strength, age, gender, positive fall history, number of medications, use of a walking aid, DIA-S score and Montreal Cognitive Assessment (MoCA) score; and (ii) SPPB subscores, ASMM/height2, grip strength, age, gender, positive fall history, number of medications, DIA-S score and MoCA score, once with and once without including use of a walking aid as independent variable. Results: Lower SPPB total score, as well as lower SPPB balance and 5xSST subscores were associated with higher FES-I scores, but SPPB walking duration subscore was not. Moreover, DIA-S, number of medications and use of a walking aid were significantly associated with FOF. Conclusion: Our preliminary results suggest that -if confirmed by subsequent studies- it may be worthwhile to screen patients with low SPPB balance and 5xSST subscores for FOF, and to treat especially these mobility deficits in neurogeriatric patients with FOF. Moreover, training neurogeriatric patients to use their walking aids correctly, critical evaluation of medication and treating depressive symptoms may further help reduce FOF in this highly vulnerable cohort.

11.
Sensors (Basel) ; 22(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35336475

RESUMEN

Evaluating gait is part of every neurological movement disorder assessment. Generally, the physician assesses the patient based on their experience, but nowadays inertial measurement units (IMUs) are also often integrated in the assessment. Instrumented gait analysis has a longstanding tradition and temporal parameters are used to compare patient groups or trace disease progression over time. However, the day-to-day variability needs to be considered especially in specific patient cohorts. The aim of the study was to examine day-to-day variability of temporal gait parameters of two experimental conditions in a cohort of neurogeriatric patients using data extracted from a lower back-worn IMU. We recruited 49 participants (24 women (age: 78 years ± 6 years, BMI = 25.1 kg/m2 and 25 men (age: 77 years ± 6 years, BMI = 26.5 kg/m2)) from the neurogeriatric ward. Two gait distances (4 m and 20 m) were performed during the first session and repeated the following day. To evaluate reliability, the Intraclass Correlation Coefficient (ICC2,k) and minimal detectable change (MDC) were calculated for the number of steps, step time, stride time, stance time, swing time, double limb support time, double limb support time variability, stride time variability and stride time asymmetry. The temporal gait parameters showed poor to moderate reliability with mean ICC and mean MDC95% values of 0.57 ± 0.18 and 52% ± 53%, respectively. Overall, only four out of the nine computed temporal gait parameters showed high relative reliability and good absolute reliability values. The reliability increased with walking distance. When only investigating steady-state walking during the 20 m walking condition, the relative and absolute reliability improved again. The most reliable parameters were swing time, stride time, step time and stance time. Study results demonstrate that reliability is an important factor to consider when working with IMU derived gait parameters in specific patient cohorts. This advocates for a careful parameter selection as not all parameters seem to be suitable when assessing gait in neurogeriatric patients.


Asunto(s)
Enfermedades del Sistema Nervioso , Caminata , Anciano , Femenino , Marcha , Análisis de la Marcha , Humanos , Masculino , Reproducibilidad de los Resultados
12.
Front Aging Neurosci ; 14: 1070093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620765

RESUMEN

Introduction: Links between cognition and walking performance in patients with Parkinson's disease (PD), which both decline with disease progression, are well known. There is lack of knowledge regarding the predictive value of cognition for changes in walking performance after individualized therapy. The aim of this study is to identify relevant predictive cognitive and affective parameters, measurable in daily clinical routines, for change in quantitative walking performance after early geriatric rehabilitation. Methods: Forty-seven acutely hospitalized patients with advanced PD were assessed at baseline (T1) and at the end (T2) of a 2-week early rehabilitative geriatric complex treatment (ERGCT). Global cognitive performance (Montreal Cognitive Assessment, MoCA), EF and divided attention (Trail Making Test B minus A, delta TMT), depressive symptoms, and fear of falling were assessed at T1. Change in walking performance was determined by the difference in quantitative walking parameters extracted from a sensor-based movement analysis over 20 m straight walking in single (ST, fast and normal pace) and dual task (DT, with secondary cognitive, respectively, motor task) conditions between T1 and T2. Bayesian regression (using Bayes Factor BF10) and multiple linear regression models were used to determine the association of non-motor characteristics for change in walking performance. Results: Under ST, there was moderate evidence (BF10 = 7.8, respectively, BF10 = 4.4) that lower performance in the ∆TMT at baseline is associated with lower reduction of step time asymmetry after treatment (R 2 adj = 0.26, p ≤ 0.008, respectively, R 2 adj = 0.18, p ≤ 0.009). Under DT walking-cognitive, there was strong evidence (BF10 = 29.9, respectively, BF10 = 27.9) that lower performance in the ∆TMT is associated with more reduced stride time and double limb support (R 2 adj = 0.62, p ≤ 0.002, respectively, R 2 adj = 0.51, p ≤ 0.009). There was moderate evidence (BF10 = 5.1) that a higher MoCA total score was associated with increased gait speed after treatment (R 2 adj = 0.30, p ≤ 0.02). Discussion: Our results indicate that the effect of ERGT on change in walking performance is limited for patients with deficits in EF and divided attention. However, these patients also seem to walk more cautiously after treatment in walking situations with additional cognitive demand. Therefore, future development of individualized treatment algorithms is required, which address individual needs of these vulnerable patients.

13.
Artículo en Inglés | MEDLINE | ID: mdl-33807432

RESUMEN

Static balance is a commonly used health measure in clinical practice. Usually, static balance parameters are assessed via force plates or, more recently, with inertial measurement units (IMUs). Multiple parameters have been developed over the years to compare patient groups and understand changes over time. However, the day-to-day variability of these parameters using IMUs has not yet been tested in a neurogeriatric cohort. The aim of the study was to examine day-to-day variability of static balance parameters of five experimental conditions in a cohort of neurogeriatric patients using data extracted from a lower back-worn IMU. A group of 41 neurogeriatric participants (age: 78 ± 5 years) underwent static balance assessment on two occasions 12-24 h apart. Participants performed a side-by-side stance, a semi-tandem stance, a tandem stance on hard ground with eyes open, and a semi-tandem assessment on a soft surface with eyes open and closed for 30 s each. The intra-class correlation coefficient (two-way random, average of the k raters' measurements, ICC2, k) and minimal detectable change at a 95% confidence level (MDC95%) were calculated for the sway area, velocity, acceleration, jerk, and frequency. Velocity, acceleration, and jerk were calculated in both anterior-posterior (AP) and medio-lateral (ML) directions. Nine to 41 participants could successfully perform the respective balance tasks. Considering all conditions, acceleration-related parameters in the AP and ML directions gave the highest ICC results. The MDC95% values for all parameters ranged from 39% to 220%, with frequency being the most consistent with values of 39-57%, followed by acceleration in the ML (43-55%) and AP direction (54-77%). The present results show moderate to poor ICC and MDC values for IMU-based static balance assessment in neurogeriatric patients. This suggests a limited reliability of these tasks and parameters, which should induce a careful selection of potential clinically relevant parameters.


Asunto(s)
Enfermedades del Sistema Nervioso , Dispositivos Electrónicos Vestibles , Aceleración , Anciano , Anciano de 80 o más Años , Humanos , Fenómenos Mecánicos , Equilibrio Postural , Reproducibilidad de los Resultados
14.
Sensors (Basel) ; 21(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805914

RESUMEN

Current research on Parkinson's disease (PD) is increasingly concerned with the identification of objective and specific markers to make reliable statements about the effect of therapy and disease progression. Parameters from inertial measurement units (IMUs) are objective and accurate, and thus an interesting option to be included in the regular assessment of these patients. In this study, 68 patients with PD (PwP) in Hoehn and Yahr (H&Y) stages 1-4 were assessed with two gait tasks-20 m straight walk and circular walk-using IMUs. In an ANCOVA model, we found a significant and large effect of the H&Y scores on step length in both tasks, and only a minor effect on step time. This study provides evidence that from the two potentially most important gait parameters currently accessible with wearable technology under supervised assessment strategies, step length changes substantially over the course of PD, while step time shows surprisingly little change in the progression of PD. These results show the importance of carefully evaluating quantitative gait parameters to make assumptions about disease progression, and the potential of the granular evaluation of symptoms such as gait deficits when monitoring chronic progressive diseases such as PD.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Marcha , Humanos , Enfermedad de Parkinson/diagnóstico , Caminata
15.
BMC Sports Sci Med Rehabil ; 13(1): 34, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785050

RESUMEN

BACKGROUND: Anti-gravity treadmills are used to decrease musculoskeletal loading during treadmill running often in return to play rehabilitation programs. The effect different gradients (uphill/downhill running) have on kinetics and spatiotemporal parameters when using an AlterG® treadmill is unclear with previous research focused on level running only. METHODS: Ten well-trained healthy male running athletes ran on the AlterG® treadmill at varying combinations of bodyweight support (60, 80, and 100% BW), speed (12 km/hr., 15 km/hr., 18 km/hr., 21 km/hr., and 24 km/hr), and gradients (- 15% decline, - 10, - 5, 0, + 5, + 10 + 15% incline), representing a total of 78 conditions performed in random order. Maximum plantar force and contact time were recorded using a wireless in-shoe force sensor insole system. RESULTS: Regression analysis showed a linear relationship for maximum plantar force with bodyweight support and running speeds for level running (p < 0.0001, adj. R2 = 0.604). The linear relationship, however, does not hold for negative gradients at speeds 12 & 15 km/h, with a relative 'dip' in maximum plantar force across all assisted bodyweight settings. CONCLUSIONS: Maximum plantar force peaks are larger with faster running and smaller with more AlterG® assisted bodyweight support (athlete unweighing). Gradient made little difference except for a downhill grade of - 5% decreasing force peaks as compared to level or uphill running.

16.
J Neuroeng Rehabil ; 18(1): 28, 2021 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-33549105

RESUMEN

BACKGROUND: Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson's disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. METHODS: Participants (older adults, people with Parkinson's disease, or people who had suffered from a stroke) performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. RESULTS: The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall [Formula: see text] 100%, precision [Formula: see text] 100%, F1 score [Formula: see text] 100%; FC: recall [Formula: see text] 100%, precision [Formula: see text] 100%, F1 score [Formula: see text] 100%), slalom walking (IC: recall [Formula: see text] 100%, precision [Formula: see text] 99%, F1 score [Formula: see text]100%; FC: recall [Formula: see text] 100%, precision [Formula: see text] 99%, F1 score [Formula: see text]100%), and turning (IC: recall [Formula: see text] 85%, precision [Formula: see text] 95%, F1 score [Formula: see text]91%; FC: recall [Formula: see text] 84%, precision [Formula: see text] 95%, F1 score [Formula: see text]89%). CONCLUSIONS: Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events.


Asunto(s)
Análisis de la Marcha/instrumentación , Enfermedad de Parkinson/fisiopatología , Accidente Cerebrovascular/fisiopatología , Caminata/fisiología , Dispositivos Electrónicos Vestibles , Anciano , Femenino , Pie , Humanos , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador
17.
Sensors (Basel) ; 20(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096899

RESUMEN

Neurological pathologies can alter the swinging movement of the arms during walking. The quantification of arm swings has therefore a high clinical relevance. This study developed and validated a wearable sensor-based arm swing algorithm for healthy adults and patients with Parkinson's disease (PwP). Arm swings of 15 healthy adults and 13 PwP were evaluated (i) with wearable sensors on each wrist while walking on a treadmill, and (ii) with reflective markers for optical motion capture fixed on top of the respective sensor for validation purposes. The gyroscope data from the wearable sensors were used to calculate several arm swing parameters, including amplitude and peak angular velocity. Arm swing amplitude and peak angular velocity were extracted with systematic errors ranging from 0.1 to 0.5° and from -0.3 to 0.3°/s, respectively. These extracted parameters were significantly different between healthy adults and PwP as expected based on the literature. An accurate algorithm was developed that can be used in both clinical and daily-living situations. This algorithm provides the basis for the use of wearable sensor-extracted arm swing parameters in healthy adults and patients with movement disorders such as Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Adulto , Anciano , Algoritmos , Brazo , Marcha , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Caminata
18.
Front Psychol ; 11: 57, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116896

RESUMEN

For motor imagery (MI) to be effective, an internal representation of the to-be-imagined movement may be required. A representation can be achieved through prior motor execution (ME), but the neural correlates of MI that are primed by ME practice are currently unknown. In this study, young healthy adults performed MI practice of a unimanual visuo-motor task (Group MI, n = 19) or ME practice combined with subsequent MI practice (Group ME&MI, n = 18) while electroencephalography (EEG) was recorded. Data analysis focused on the MI-induced event-related desynchronization (ERD). Specifically, changes in the ERD and movement times (MT) between a short familiarization block of ME (Block pre-ME), conducted before the MI or the ME combined with MI practice phase, and a short block of ME conducted after the practice phase (Block post-ME) were analyzed. Neither priming effects of ME practice on MI-induced ERD were found nor performance-enhancing effects of MI practice in general. We found enhancements of the ERD and MT in Block post-ME compared to Block pre-ME, but only for Group ME&MI. A comparison of ME performance measures before and after the MI phase indicated however that these changes could not be attributed to the combination of ME and MI practice. The mixed results of this study may be a consequence of the considerable intra- and inter-individual differences in the ERD, introduced by specifics of the experimental setup, in particular the individual and variable task duration, and suggest that task and experimental setup can affect the interplay of ME and MI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA