Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 92
1.
Food Chem ; 452: 139588, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38754168

In this study, sodium alginate/ soy protein isolate (SPI) microgels cross-linked by various divalent cations including Cu2+, Ba2+, Ca2+, and Zn2+ were fabricated. Cryo-scanning electron microscopy observations revealed distinctive structural variations among the microgels. In the context of gastric pH conditions, the degree of shrinkage of the microgels followed the sequence of Ca2+ > Ba2+ > Cu2+ > Zn2+. Meanwhile, under intestinal pH conditions, the degree of swelling was ranked as Zn2+ > Ca2+ > Ba2+ > Cu2+. The impact of these variations was investigated through in vitro digestion studies, revealing that all microgels successfully delayed the release of ß-carotene within the stomach. Within the simulated intestinal fluid, the microgel cross-linked with Zn2+ exhibited an initial burst release, while those cross-linked with Cu2+, Ba2+, or Ca2+ displayed a sustained release pattern. This research underscores the potential of sodium alginate/SPI microgels cross-linked with different divalent cations as efficient controlled-release delivery systems.


Alginates , Delayed-Action Preparations , Microgels , Soybean Proteins , Alginates/chemistry , Soybean Proteins/chemistry , Delayed-Action Preparations/chemistry , Microgels/chemistry , Hydrogen-Ion Concentration , beta Carotene/chemistry , Cations, Divalent/chemistry
2.
Drug Chem Toxicol ; : 1-15, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38465444

Alkaloids are naturally occurring compounds with complex structures found in natural plants. To further improve the understanding of plant alkaloids, this review focuses on the classification, toxicity and mechanisms of action, providing insight into the occurrence of alkaloid-poisoning events and guiding the safe use of alkaloids in food, supplements and clinical applications. Based on their chemical structure, alkaloids can be divided into organic amines, diterpenoids, pyridines, isoquinolines, indoles, pyrrolidines, steroids, imidazoles and purines. The mechanisms of toxicity of alkaloids, including neurotoxicity, hepatoxicity, nephrotoxicity, cardiotoxicity and cytotoxicity, have also been reviewed. Some cases of alkaloid poisoning have been introduced when used as food or clinically, including accidental food poisoning, excessive consumption, and poisoning caused by the improper use of alkaloids in a clinical setting, and the importance of safety evaluation was illustrated. This review summarizes the toxicity and mechanism of action of alkaloids and provides evidence for the need for the safe use of alkaloids in food, supplements and clinical applications.

3.
Toxicol Res (Camb) ; 13(1): tfae013, 2024 Feb.
Article En | MEDLINE | ID: mdl-38332946

Background: Zanthoxylum armatum DC. (ZADC) is a novel food raw material resource, offering both edible and medicinal properties. Recent research has unveiled the toxic nature of ZADC, particularly its close association with the nervous system. In a prior study, we observed that administering methanol extract of Zanthoxylum armatum DC. (MZADC) to rats via gavage at a dose of 1.038 g/kg resulted in various neurotoxicity symptoms, including excessive salivation, reduced mobility, unsteady gait, muscle twitching, and altered respiratory rates. Materials and methods: We conducted cell-based research to assess the safety of ZADC and elucidate its potential toxic mechanism. In addition, we used experimental methods such as Cell Counting Kit-8, Western blot, and Flow cytometry to detect cytotoxicity in SH-SY5Y cells after intervention with MZADC. Results: Following exposure of SY-SY5Y cells with MZADC, a substantial decline in cell viability was observed, accompanied by a concentration-dependent increase in intracellular reactive oxygen species (ROS) levels. Additionally, MZADC induced cellular oxidative stress, leading to elevated malonic dialdehyde (MDA) and superoxide dismutase (SOD) concentrations while decreasing glutathione (GSH) levels. Furthermore, MZADC induced apoptosis at varying doses (20, 40, and 60 µg/mL), and this effect was associated with increased Caspase-3, Bax expressions, and reduced Bcl2 and Bcl2/Bax expressions. In addition, the investigation revealed that MZADC induced autophagy inhibition in SH-SY5Y cells by activating the mTOR signaling pathway, resulting in a decrease in LC3II/LCI and Beclin-1, while increasing p-mTOR/mTOR, p62. Conclusion: Consequently, this study suggests that MZADC triggers the mTOR pathway through oxidative stress in SH-SY5Y cells, ultimately leading to apoptosis. Understanding the toxicity mechanisms associated with ZADC can offer a valuable theoretical and experimental basis for its development and utilization.

4.
iScience ; 27(1): 108592, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38205240

A key regulatory mechanism involves circular RNA (circRNA) acting as a sponge to modulate microRNA (miRNA), and thus, studying their interaction has significant medical implications. In this field, there are currently two pressing issues that remain unresolved. Firstly, due to the scarcity of verified interactions, we require a minimal amount of samples for training. Secondly, the current models lack interpretability. Therefore, we propose SPBCMI, a method that combines sequence features extracted using the Bidirectional Encoder Representations from Transformer (BERT) model and structural features of biological molecule networks extracted through graph embedding to train a GBDT (Gradient-boosted decision trees) classifier for prediction. Our method yielded an AUC of 0.9143, which is currently the best for this problem. Furthermore, in the case study, SPBCMI accurately predicted 7 out of 10 circRNA-miRNA interactions. These results show that our method provides an innovative and high-performing approach to understanding the interaction between circRNA and miRNA.

5.
Psychol Res ; 88(3): 936-949, 2024 Apr.
Article En | MEDLINE | ID: mdl-38117321

Intentional inhibition is a crucial component of self-regulation, yet it is under-researched, because it is difficult to study without external stimuli or overt behaviors. Although Free-Choice tasks have been developed, it remains unclear how two key design features (i.e., behavioral impulse and time pressure) affect their sensitivity to intentional inhibition. To investigate this, the present study developed a Free Two-Choice Oddball task, which generated both an inhibition rate index and a response time (RT) index. Two experiments were conducted to systematically manipulate the ratio of the reactive standard to oddball trials and reaction time limit, inducing diverse behavioral impulses and different time pressures. The following findings were obtained from the critical Free-Choice trials. In the equal ratio condition, participants demonstrated comparable RTs for both the standard and oddball responses. In the moderate-ratio condition, participants exhibited longer RTs for the oddball than standard responses under low- but not high-time pressure. In the high-ratio condition, while RTs for the oddball responses were longer than those for the standard responses under both the high- and low-time pressures, participants displayed a decreased inhibition rate under the high-time pressure compared to the low-time pressure. Finally, participants exhibited a reduced inhibition rate in the high-ratio condition compared to the moderate-ratio condition. Together, these findings suggest that Free-Choice tasks can reflect intentional inhibition under specific conditions, and intentional inhibition is susceptible to both behavioral impulse and time pressure, while also establishing the theoretical and methodological foundations for subsequent research.


Inhibition, Psychological , Time Pressure , Humans , Reaction Time/physiology , Time Factors
6.
J Ethnopharmacol ; 319(Pt 3): 117321, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-37866465

ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum armatum DC. (ZADC) is a traditional medicinal plant with various pharmacological activities and is widely used in China, Japan, India, and other regions. Previous studies have revealed that the methanol extract of ZADC can cause neurotoxicity symptoms in rats, such as drooling, decreased appetite, decreased movement, and increased respiratory rate. However, the basis of these toxic substances and the mechanism of neurotoxicity remain unclear. AIM OF THE STUDY: To evaluate the effects of ZADC on nerve cells and their damage mechanisms and discuss the possible toxic substance basis. MATERIALS AND METHODS: The ethyl acetate extract of ZADC is obtained by extracting the methanol extract of ZADC with ethyl acetate. The Q-Orbitrap LC-MS/MS method was employed to analyze the chemical composition of the EA extract of ZADC. SH-SY5Y cells were incubated with different concentrations of the ethyl acetate extract of ZADC. The cytotoxicity of the extract was evaluated using CCK-8, LDH, and ROS assays, and the oxidative stress status of cells was assessed using MDA, GSH, and SOD. Cell apoptosis was detected using flow cytometry. Damage to mitochondrial function was evaluated by labeling mitochondria, ATP, and MMP with fluorescence. Cyto-C, Caspase-3, Caspase-9, Apaf-1, Bax, and reduced Bcl2 expression were measured to evaluate the activation of the mitochondrial apoptosis pathway. Finally, NAC intervention was used to detect changes in the relevant indicators. The activation of mitochondrial apoptosis pathway was evaluated by measuring Cyto-C, Caspase-3, Caspase-9, Apaf-1, and Bax and Bcl2 expression. Finally, NAC intervention was utilized to detect changes in the relevant indicators. RESULTS: After treating SY-SY5Y cells with EA extract from ZADC, cell viability decreased significantly, and the intracellular ROS level increased in a dose-dependent manner. Meanwhile, ZADC can cause cellular oxidative stress and increase MDA and SOD concentrations while decreasing GSH concentrations. It can also shorten the mitochondrial cristae and decrease the number of mitochondria. In contrast, it can reduce ATP synthesis in the mitochondria and mitochondrial membrane potential (MMP). Furthermore, it increased the apoptosis rate and the expression of Cyto-C, Caspase-3, Caspase-9, Apaf-1, and Bax and reduced Bcl2 expression. NAC intervention alleviated the reduction in SH-SY5Y cell survival and the accumulation of reactive oxygen species induced by the EA extract in ZADC. It also inhibits signaling pathways dominated by proteins, such as Cyto-C, reducing cell apoptosis and cytotoxicity. A total of 46 compounds were identified in the extracts. CONCLUSIONS: The results suggest that EA extract of ZADC can induce the mitochondrial apoptotic pathway by accumulating ROS in cells, leading to apoptosis. Antioxidants had a good inhibitory and protective effect against cell damage caused by the EA extract of ZADC. The neurotoxic components of ZADC may be organic acids and compounds containing amino groups.


Neuroblastoma , Zanthoxylum , Humans , Animals , Rats , Caspase 3 , Caspase 9 , Reactive Oxygen Species , Chromatography, Liquid , Methanol , bcl-2-Associated X Protein , Tandem Mass Spectrometry , Mitochondria , Apoptosis , Adenosine Triphosphate , Superoxide Dismutase
7.
Heliyon ; 9(12): e22900, 2023 Dec.
Article En | MEDLINE | ID: mdl-38094063

Objective: To identify host factors associated with false-negative results of interferon-γ release tests in adults with active tuberculosis. Methods: The clinical data of 943 patients with active tuberculosis diagnosed by acid-fast smear staining, Mycobacterium tuberculosis culture, Mycobacterium tuberculosis PCR and pathological examination at West China Hospital of Sichuan University were retrospectively analysed. According to the results of the interferon γ release test (IGRA), the patients were divided into the IGRA- group and IGRA+ group. Logistic regression was used to analyze the sociodemographic data and clinical characteristics of participants in the IGRA- group and IGRA+ group. Results: Among 943 patients with active tuberculosis, 174 (18.5 %) were IGRA negative (false negative), and 769 (81.5 %) were IGRA positive. Multivariate logistic regression analysis identified the following characteristics independently associated with IGRA negativity: age (OR: 1.02; 95 % CI: 1.01 1.03; p = 0.006), anti-tuberculosis treatment >1 month (OR: 1.68; 95 % CI: 1.12 2.52; p = 0.013), HIV infection (OR: 9.48; 95 % CI: 3.23 27.85; p = 0.000), combined with connective tissue diseases (OR: 2.78; 95 % CI: 1.30 5.94; p = 0.008) and low hemoglobin (OR: 0.99; 95 % CI: 0.98 1.00; p = 0.044) was associated with an increased false-negative probability of IGRA. Conclusion: Age, anti-tuberculosis therapy >1 month, coinfection with HIV, coassociated connective tissue disease and decreased hemoglobin were identified as risk factors for false-negative results of IGRA. Our results suggest a careful interpretation of IGRA in adults with these characteristics.

8.
J Immunol ; 211(12): 1767-1782, 2023 12 15.
Article En | MEDLINE | ID: mdl-37947442

Understanding the mechanisms underlying the acquisition and maintenance of effector function during T cell differentiation is important to unraveling how these processes can be dysregulated in the context of disease and manipulated for therapeutic intervention. In this study, we report the identification of a previously unappreciated regulator of murine T cell differentiation through the evaluation of a previously unreported activity of the kinase inhibitor, BioE-1197. Specifically, we demonstrate that liver kinase B1 (LKB1)-mediated activation of salt-inducible kinases epigenetically regulates cytokine recall potential in effector CD8+ and Th1 cells. Evaluation of this phenotype revealed that salt-inducible kinase-mediated phosphorylation-dependent stabilization of histone deacetylase 7 (HDAC7) occurred during late-stage effector differentiation. HDAC7 stabilization increased nuclear HDAC7 levels, which correlated with total and cytokine loci-specific reductions in the activating transcription mark histone 3 lysine 27 acetylation (H3K27Ac). Accordingly, HDAC7 stabilization diminished transcriptional induction of cytokine genes upon restimulation. Inhibition of this pathway during differentiation produced effector T cells epigenetically poised for enhanced cytokine recall. This work identifies a previously unrecognized target for enhancing effector T cell functionality.


Cytokines , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases , Animals , Mice , Cell Differentiation , Cytokines/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
9.
JCI Insight ; 8(21)2023 Nov 08.
Article En | MEDLINE | ID: mdl-37788104

MTORC1 integrates signaling from the immune microenvironment to regulate T cell activation, differentiation, and function. TSC2 in the tuberous sclerosis complex tightly regulates mTORC1 activation. CD8+ T cells lacking TSC2 have constitutively enhanced mTORC1 activity and generate robust effector T cells; however, sustained mTORC1 activation prevents generation of long-lived memory CD8+ T cells. Here we show that manipulating TSC2 at Ser1365 potently regulated activated but not basal mTORC1 signaling in CD8+ T cells. Unlike nonstimulated TSC2-KO cells, CD8+ T cells expressing a phosphosilencing mutant TSC2-S1365A (TSC2-SA) retained normal basal mTORC1 activity. PKC and T cell receptor (TCR) stimulation induced TSC2 S1365 phosphorylation, and preventing this with the SA mutation markedly increased mTORC1 activation and T cell effector function. Consequently, SA CD8+ T cells displayed greater effector responses while retaining their capacity to become long-lived memory T cells. SA CD8+ T cells also displayed enhanced effector function under hypoxic and acidic conditions. In murine and human solid-tumor models, SA CD8+ T cells used as adoptive cell therapy displayed greater antitumor immunity than WT CD8+ T cells. These findings reveal an upstream mechanism to regulate mTORC1 activity in T cells. The TSC2-SA mutation enhanced both T cell effector function and long-term persistence/memory formation, supporting an approach to engineer better CAR-T cells for treating cancer.


Tuberous Sclerosis , Mice , Humans , Animals , Mechanistic Target of Rapamycin Complex 1 , CD8-Positive T-Lymphocytes , Mutation , Cell Differentiation , Tumor Microenvironment
10.
Infect Dis Ther ; 12(11): 2535-2544, 2023 Nov.
Article En | MEDLINE | ID: mdl-37815754

INTRODUCTION: Recent cross-sectional research has demonstrated a substantial link between tuberculosis (TB) and gut microbiota. Nevertheless, the causal impact of the gut microbiota on TB susceptibility in humans remains unknown. METHODS: The Mendelian randomization (MR) method was utilized for investigating the causality between them. The main method used for MR analysis was the inverse variance weighted (IVW) test, with the MR-Egger, weighted median, weighted mode, and simple median methods serving as supplements. And several sensitivity tests were carried out to validate the MR findings. RESULTS: The IVW outcomes suggested that three bacterial traits exhibited associations with susceptibility to respiratory TB after Bonferroni correction, namely Lachnospiraceae UCG010 (odds ratio [OR] 1.73, 95% confidence interval [CI] 1.17-2.55, P = 0.005), Eubacterium (brachy group) (OR 1.33, 95% CI 1.07-1.65, P = 0.009), and Ruminococcaceae UCG005 (OR 0.71, 95% CI 0.52-0.98, P = 0.034). Sensitivity analyses demonstrated that horizontal pleiotropy and heterogeneity were absent, thereby guaranteeing the reliability of the results. CONCLUSION: This research sheds light on the causal impact of gut microbiota on respiratory tuberculosis susceptibility, improving our knowledge of therapeutic strategies for managing TB.

11.
J Steroid Biochem Mol Biol ; 234: 106402, 2023 11.
Article En | MEDLINE | ID: mdl-37734284

The effects of acupuncture on the protein and gene expression of oestrogen receptors (ERs) alpha (α) and beta (ß) in testosterone-induced benign prostatic hyperplasia (BPH) in rats remains unclear. In this study, rats were randomly divided into four groups (n = 10 per group). The rats in the blank group did not receive any treatment, while the rats in the model group were injected intraperitoneally with testosterone propionate for 28 days to establish the BPH model and then randomly sub-divided into a control group, an acupuncture group and a finasteride group (positive control group). Dissections were performed after rats were anesthetized with isoflurane, and then the weight and volume of the prostate were then measured. The expression of ERs was detected via immunohistochemistry, western blot and real-time polymerase chain reaction. The results showed that ERα was discontinuously distributed in epithelial cells and expressed in large quantities in stromal cells, and ERß was aggregated and expressed in hyperplastic nodules. Acupuncture and finasteride could significantly improve the distribution of ERα and ERß which suggested that acupuncture and finasteride could improve BPH. There was no significant difference in ERα messenger ribonucleic acid (mRNA) expression among the groups, but the ERß mRNA expression in the finasteride group showed a significant difference compared with the control and acupuncture groups. The mechanism of the acupuncture treatment of BPH may be related to the increased transcription level of ERß mRNA in prostate tissues, the improved distribution of ERα expression in epithelial cells and the aggregation expression of ERs in hyperplastic nodules.


Acupuncture Therapy , Prostatic Hyperplasia , Male , Humans , Rats , Animals , Finasteride/pharmacology , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/therapy , Prostatic Hyperplasia/metabolism , Receptors, Estrogen/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Testosterone , RNA, Messenger
12.
PLoS Genet ; 19(6): e1010787, 2023 06.
Article En | MEDLINE | ID: mdl-37343034

Although the biological utilities of endogenous RNAi (endo-RNAi) have been largely elusive, recent studies reveal its critical role in the non-model fruitfly Drosophila simulans to suppress selfish genes, whose unchecked activities can severely impair spermatogenesis. In particular, hairpin RNA (hpRNA) loci generate endo-siRNAs that suppress evolutionary novel, X-linked, meiotic drive loci. The consequences of deleting even a single hpRNA (Nmy) in males are profound, as such individuals are nearly incapable of siring male progeny. Here, comparative genomic analyses of D. simulans and D. melanogaster mutants of the core RNAi factor dcr-2 reveal a substantially expanded network of recently-emerged hpRNA-target interactions in the former species. The de novo hpRNA regulatory network in D. simulans provides insight into molecular strategies that underlie hpRNA emergence and their potential roles in sex chromosome conflict. In particular, our data support the existence of ongoing rapid evolution of Nmy/Dox-related networks, and recurrent targeting of testis HMG-box loci by hpRNAs. Importantly, the impact of the endo-RNAi network on gene expression flips the convention for regulatory networks, since we observe strong derepression of targets of the youngest hpRNAs, but only mild effects on the targets of the oldest hpRNAs. These data suggest that endo-RNAi are especially critical during incipient stages of intrinsic sex chromosome conflicts, and that continual cycles of distortion and resolution may contribute to speciation.


Drosophila melanogaster , Drosophila , Animals , Male , RNA Interference , Drosophila melanogaster/genetics , Drosophila/genetics , Drosophila simulans , Genomics , Logic
13.
Immunohorizons ; 7(6): 493-507, 2023 06 01.
Article En | MEDLINE | ID: mdl-37358498

In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.


Kallikreins , T-Lymphocytes , Animals , Mice , Male , Female , Mice, Inbred C57BL , Adipocytes, Beige , T-Lymphocytes/metabolism , Kallikreins/metabolism , Blood Glucose/metabolism , Insulin Resistance
14.
Mediators Inflamm ; 2023: 3648946, 2023.
Article En | MEDLINE | ID: mdl-37292257

Background: The clinical outcomes of low-grade glioma (LGG) are associated with T cell infiltration, but the specific contribution of heterogeneous T cell types remains unclear. Method: To study the different functions of T cells in LGG, we mapped the single-cell RNA sequencing results of 10 LGG samples to obtain T cell marker genes. In addition, bulk RNA data of 975 LGG samples were collected for model construction. Algorithms such as TIMER, CIBERSORT, QUANTISEQ, MCPCOUTER, XCELL, and EPIC were used to depict the tumor microenvironment landscape. Subsequently, three immunotherapy cohorts, PRJEB23709, GSE78820, and IMvigor210, were used to explore the efficacy of immunotherapy. Results: The Human Primary Cell Atlas was used as a reference dataset to identify each cell cluster; a total of 15 cell clusters were defined and cells in cluster 12 were defined as T cells. According to the distribution of T cell subsets (CD4+ T cell, CD8+ T cell, Naïve T cell, and Treg cell), we selected the differentially expressed genes. Among the CD4+ T cell subsets, we screened 3 T cell-related genes, and the rest were 28, 4, and 13, respectively. Subsequently, according to the T cell marker genes, we screened six genes for constructing the model, namely, RTN1, HERPUD1, MX1, SEC61G, HOPX, and CHI3L1. The ROC curve showed that the predictive ability of the prognostic model for 1, 3, and 5 years was 0.881, 0.817, and 0.749 in the TCGA cohort, respectively. In addition, we found that risk scores were positively correlated with immune infiltration and immune checkpoints. To this end, we obtained three immunotherapy cohorts to verify their predictive ability of immunotherapy effects and found that high-risk patients had better clinical effects of immunotherapy. Conclusion: This single-cell RNA sequencing combined with bulk RNA sequencing may elucidate the composition of the tumor microenvironment and pave the way for the treatment of low-grade gliomas.


Glioma , Single-Cell Gene Expression Analysis , Humans , Prognosis , Transcription Factors , CD4-Positive T-Lymphocytes , CD3 Complex , Glioma/genetics , Tumor Microenvironment/genetics , SEC Translocation Channels
15.
Regen Ther ; 23: 76-83, 2023 Jun.
Article En | MEDLINE | ID: mdl-37131535

In this study, different concentrations of 17-ß estradiol silk fibroin (SF)porous scaffolds (SFPS) were prepared using freeze-drying technique, with a hope for optimal concentration and apply it locally to the bone defect area. In this study, the porous scaffold morphology structure was characterized by SEM, FTIR and universal capacity testing machines, and the in vitro cytocompatibility and biological activity of scaffold materials were studied by cell adhesion, viability and proliferation experiments. The results showed that SFPS boasts better physicochemical properties, while 17-ß estradiol SF scaffolds with low concentrations of 10-10 mol/L and 10-12 mol/L had more growth and proliferation of SF scaffolds with higher concentrations, and 10-10 mol/L was the optimal concentration of 17-ß estradiol SFPS, which was more conducive to cell adhesion and proliferation. On the other hand, after osteogenesis induction of BMSCs inoculated on 17-ß estradiol SFPS at different concentrations, it was found that the expression of alkaline phosphatase in BMSCs on different concentrations of 17-ß estradiol porous scaffolds was not large. No conflict of interest exits in the submission of this manuscript.

16.
Front Neurosci ; 17: 1059496, 2023.
Article En | MEDLINE | ID: mdl-37214397

Objective: To investigate the mechanism underlying the effects of berberine (BBR) in the treatment of Alzheimer's disease (AD). Methods: 3 × Tg AD mice were treated with BBR for 3 months, then the open field test (OFT), the novel object recognition test (NOR) and the Morris water maze (MWM) test were performed to assess behavioral performance. Hematoxylin-eosin (HE) staining, Nissl staining were used to examine histopathological changes. The pharmacological and molecular properties of BBR were obtained from the TCMSP database. BBR-associated AD targets were identified using the PharmMapper (PM), the comparative toxicogenomics database (CTD), DisGeNet and the human gene database (GeneCards). Core networks and BBR targets for the treatment of AD were identified using PPI network and functional enrichment analyses. AutoDock software was used to model the interaction between BBR and potential targets. Finally, RT-qPCR, western blotting were used to validate the expression of core targets. Results: Behavioral experiments, HE staining and Nissl staining have shown that BBR can improve memory task performance and neuronal damage in the hippocampus of AD mice. 117 BBR-associated targets for the treatment of AD were identified, and 43 genes were used for downstream functional enrichment analysis in combination with the results of protein-protein interaction (PPI) network analysis. 2,230 biological processes (BP) terms, 67 cell components (CC) terms, 243 molecular function (MF) terms and 118 KEGG terms were identified. ALB, EGFR, CASP3 and five targets in the PI3K-AKT signaling pathway including AKT1, HSP90AA1, SRC, HRAS, IGF1 were selected by PPI network analysis, validated by molecular docking analysis and RT-q PCR as core targets for further analysis. Akt1 mRNA expression levels were significantly decreased in AD mice and significantly increased after BBR treatment (p < 0.05). Besides, AKT and ERK phosphorylation decreased in the model group, and BBR significantly increased their phosphorylation levels. Conclusion: AKT1, HSP90AA1, SRC, HRAS, IGF1 and ALB, EGFR, CASP3 were core targets of BBR in the treatment of AD. BBR may exert a neuroprotective effect by modulating the ERK and AKT signaling pathways.

17.
Front Big Data ; 6: 1113402, 2023.
Article En | MEDLINE | ID: mdl-36999047

Recent large datasets measuring the gene expression of millions of possible gene promoter sequences provide a resource to design and train optimized deep neural network architectures to predict expression from sequences. High predictive performance due to the modeling of dependencies within and between regulatory sequences is an enabler for biological discoveries in gene regulation through model interpretation techniques. To understand the regulatory code that delineates gene expression, we have designed a novel deep-learning model (CRMnet) to predict gene expression in Saccharomyces cerevisiae. Our model outperforms the current benchmark models and achieves a Pearson correlation coefficient of 0.971 and a mean squared error of 3.200. Interpretation of informative genomic regions determined from model saliency maps, and overlapping the saliency maps with known yeast motifs, supports that our model can successfully locate the binding sites of transcription factors that actively modulate gene expression. We compare our model's training times on a large compute cluster with GPUs and Google TPUs to indicate practical training times on similar datasets.

18.
Front Neurosci ; 17: 1093180, 2023.
Article En | MEDLINE | ID: mdl-36743801

Objective: To analyze the effects and mechanisms of berberine in the treatment of aging-related cognitive dysfunction based on network pharmacology methods, molecular docking techniques, and animal experiments. Methods: A mouse model of cognitive dysfunction was constructed by subcutaneous injection of D-galactose (D-gal) for 10 weeks, and the neuroprotective effects of berberine on aging-related cognitive dysfunction mice were evaluated by the Morris water maze (MWM) and immunofluorescence staining. The targets of berberine were obtained by SwissTargetPrediction, GeneCards, and PharmMapper. Putative targets of cognitive dysfunction were obtained by GeneCards, TTD, and DrugBank database. The STRING database and Cytoscape software were applied for protein-protein interaction (PPI) analysis and further screening of core targets. The DAVID database was used for Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis to clarify the biological processes and pathways involved in the intersection targets, and AutoDockTools was adopted for molecular docking verification of core targets. Finally, the core genes were validated using real-time quantitative PCR. Results: The MWM results showed that treatment with berberine significantly improved spatial learning and memory in mice with cognitive decline induced by D-gal. Immunofluorescence staining indicated that berberine modified the levels of aging-related markers in the brain. A total of 386 berberine putative targets associated with cognitive dysfunction were identified based on the public database. The core targets of berberine for improving cognitive function, include Mapk1, Src, Ctnnb1, Akt1, Pik3ca, Tp53, Jun, and Hsp90aa1. GO enrichment and KEGG pathway enrichment analyses indicated that the mechanism of berberine in the treatment of aging-related cognitive dysfunction is attributed to pathways such as PI3K-AKT and MAPK pathways. In vivo experiments further confirmed that Akt1, Ctnnb1, Tp53, and Jun were involved in the neuroprotective actions of berberine. Conclusion: This study reveals the multi-target and multi-pathway effects of berberine on regulating aging-related cognitive dysfunction, which provides preclinical evidence and may promote new drug development in mitigating cognitive dysfunction.

20.
Food Res Int ; 164: 112319, 2023 02.
Article En | MEDLINE | ID: mdl-36737912

In this study, the effects of soy protein isolate (SPI) on the morphology, encapsulation efficiency, storage stability, swelling behavior, and in vitro digestion behavior of calcium alginate (CA) microgels were investigated. CA and calcium alginate-SPI (CAS) microgels with encapsulated ß-carotene were prepared by extruding a mixture of alginate and SPI using a co-extrusion technique, followed by cross-linking with Ca2+. All microgels exhibited homogeneous sizes and spherical shapes, and CAS microgels showed high levels of protein loading efficiency. The encapsulation efficiency and storage stability of ß-carotene within CAS microgels were higher than those within CA microgels. The introduction of SPI into CAS microgels resulted in a higher degree of gel size shrinkage in gastric fluid and a lower degree of swelling in intestinal fluid compared to CA microgels. In vitro digestion was conducted to investigate the effects of the addition of SPI on the release behavior of CA and CAS microgels. Results obtained showed that CAS microgels were more resistant to simulated gastric fluid than CA microgels. Cryo-scanning electron microscopy (cryo-SEM) and confocal laser scanning microscopy (CLSM) observations indicated that the release behavior was dependent on the porosity of the CA and CAS microgels, and the porosity was influenced by the concentration of SPI. This study showed that the introduction of SPI to CA microgels can lead to the development of an effective controlled release delivery system.


Microgels , Soybean Proteins , beta Carotene , Delayed-Action Preparations , Adsorption , Alginates
...