Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Radiol Cardiothorac Imaging ; 6(2): e240020, 2024 Apr.
Article En | MEDLINE | ID: mdl-38602468

Radiology: Cardiothoracic Imaging publishes novel research and technical developments in cardiac, thoracic, and vascular imaging. The journal published many innovative studies during 2023 and achieved an impact factor for the first time since its inaugural issue in 2019, with an impact factor of 7.0. The current review article, led by the Radiology: Cardiothoracic Imaging trainee editorial board, highlights the most impactful articles published in the journal between November 2022 and October 2023. The review encompasses various aspects of coronary CT, photon-counting detector CT, PET/MRI, cardiac MRI, congenital heart disease, vascular imaging, thoracic imaging, artificial intelligence, and health services research. Key highlights include the potential for photon-counting detector CT to reduce contrast media volumes, utility of combined PET/MRI in the evaluation of cardiac sarcoidosis, the prognostic value of left atrial late gadolinium enhancement at MRI in predicting incident atrial fibrillation, the utility of an artificial intelligence tool to optimize detection of incidental pulmonary embolism, and standardization of medical terminology for cardiac CT. Ongoing research and future directions include evaluation of novel PET tracers for assessment of myocardial fibrosis, deployment of AI tools in clinical cardiovascular imaging workflows, and growing awareness of the need to improve environmental sustainability in imaging. Keywords: Coronary CT, Photon-counting Detector CT, PET/MRI, Cardiac MRI, Congenital Heart Disease, Vascular Imaging, Thoracic Imaging, Artificial Intelligence, Health Services Research © RSNA, 2024.


Atrial Appendage , Heart Defects, Congenital , Radiology , Humans , Contrast Media , Artificial Intelligence , Gadolinium , Tomography, X-Ray Computed
2.
ACS Appl Mater Interfaces ; 16(11): 13496-13508, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38449094

Atherosclerosis is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques, while macrophages as key players in plaque progression and destabilization are promising targets for atherosclerotic plaque imaging. Contrast-enhanced magnetic resonance imaging (CE-MRI) has emerged as a powerful noninvasive imaging technique for the evaluation of atherosclerotic plaques within arterial walls. However, the visualization of macrophages within atherosclerotic plaques presents considerable challenges due to the intricate pathophysiology of the disease and the dynamic behavior of these cells. Biocompatible ferrite nanoparticles with diverse surface ligands possess the potential to exhibit distinct relaxivity and cellular affinity, enabling improved imaging capabilities for macrophages in atherosclerosis. In this work, we report macrophage-affinity nanoparticles for magnetic resonance imaging (MRI) of atherosclerosis via tailoring nanoparticle surface coating. The ultrasmall zinc ferrite nanoparticles (Zn0.4Fe2.6O4) as T1 contrast agents were synthesized and modified with dopamine, 3,4-dihydroxyhydrocinnamic acid, and phosphorylated polyethylene glycol to adjust their surface charges to be positively, negatively, and neutrally charged, respectively. In vitro MRI evaluation shows that the T1 relaxivity for different surface charged Zn0.4Fe2.6O4 nanoparticles was three higher than that of the clinically used Gd-DTPA. Furthermore, in vivo atherosclerotic plaque MR imaging indicates that positively charged Zn0.4Fe2.6O4 showed superior MRI efficacy on carotid atherosclerosis than the other two, which is ascribed to high affinity to macrophages of positively charged nanoparticles. This work provides improved diagnostic capability and a better understanding of the molecular imaging of atherosclerosis.


Atherosclerosis , Ferric Compounds , Nanoparticles , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Zinc , Atherosclerosis/pathology , Contrast Media , Magnetic Resonance Imaging/methods , Macrophages/pathology
3.
Quant Imaging Med Surg ; 14(1): 736-748, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38223028

Background: Epicardial adipose tissue (EAT) contributes to inflammation and fibrosis of the neighboring myocardial tissue via paracrine signaling. In this retrospective study, we investigated the abnormal changes in the amount of EAT in male children with Duchenne muscular dystrophy (DMD) using cardiac magnetic resonance (CMR) imaging. Furthermore, we constructed and validated a nomogram including EAT-related CMR imaging parameter for predicting the occurrence of myocardial fibrosis in patients with DMD. Methods: This study enrolled 283 patients with DMD and 57 healthy participants who underwent CMR acquisitions to measure the quantitative parameters of EAT, pericardial adipose tissue (PAT), paracardial adipose tissue, and subcutaneous adipose tissue. Late gadolinium enhancement (LGE) was performed to confirm myocardial fibrosis in patients with DMD. The DMD group consisted of 200 patients from institution 1 (the ratio of the training set and the internal validation set was 7:3) and 83 patients from four other institutions (the external validation set). Logistic and least absolute shrinkage and selection operator (LASSO) regression was used to select the optimal predictors and to develop and validate the nomogram model predicting LGE risk in the training set, internal validation set, and external validation set. Results: Compared with those in healthy controls, some regional EAT thicknesses, areas, and global volumes were significantly higher in patients with DMD, and 41.7% of patients with DMD showed positive LGE. These LGE-positive patients with DMD showed significantly higher EAT volume (median 23.9 mL/m3; P<0.001) and PAT volume (median 31.8 mL/m3; P<0.001) compared with the LGE-negative patients with DMD. Age [odds ratio (OR) 2.0; P<0.001], body fat percentage (OR 1.3; P<0.001), and EAT volume (OR 1.4; P<0.001) were independently associated with positive LGE in the training set. The interactive dynamic nomogram showed superior prediction performance, with a high degree of the calibration, discrimination, and clinical net benefit in the training and validation of the DMD datasets. The area under the curve (AUC) values of the nomogram in the training set, internal validation set, and external validation set were 0.95 [95% confidence interval (CI): 0.91-0.98], 0.97 (95% CI: 0.92-0.99), and 0.95 (95% CI: 0.91-0.99), respectively. Conclusions: The onset of LGE-based myocardial fibrosis was associated with EAT volume in patients with DMD. Additionally, the nomogram with EAT volumes showed superior performance in patients with DMD for predicting the occurrence of myocardial fibrosis.

4.
Quant Imaging Med Surg ; 14(1): 61-74, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38223074

Background: Coronary magnetic resonance angiography (CMRA) is being increasingly used in pediatric patients with congenital coronary artery anomalies (CAAs). However, the data on the free-breathing self-navigation technique, which has the potential to simplify the acquisition plan with a high success rate at 3T, remain scarce. This study investigated the clinical application value of self-navigated (sNAV) CMRA at 3T in pediatric patients with suspected CAAs and compared it to conventional diaphragmatic-navigated (dNAV) CMRA. Methods: From April 2019 to March 2022, we enrolled 65 pediatric patients (38 males and 27 females; mean age 8.5±4.4 years) with suspected CAAs in this prospective study. All patients underwent both dNAV and sNAV sequences in random order with gradient recalled echo (GRE) sequence during free breathing, with 39 (20 males and 19 females; mean age 10.2±3.6 years) of them additionally undergoing coronary computed tomography angiography (CCTA) or invasive coronary angiography (ICA). We measured and compared the success rate, scan time, visual score of the 9 main coronary artery segments, vessel sharpness, and vessel length between the two sequences. The diagnostic accuracy was compared using CCTA or ICA as a reference. Results: The success rate of sNAV-CMRA (65/65, 100%) was higher than that of dNAV-CMRA (61/65, 93.8%) (P<0.001), and the scan time of sNAV-CMRA (7.3±2.5 min) was significantly shorter than that of dNAV-CMRA (9.1±3.6 min) (P=0.002). The acquisition efficiency of dNAV-CMRA was 40.5%±12.9%, while for sNAV-CMRA, 100% acquisition efficiency was achieved. There was no significant difference in vessel length of any of the coronary arteries, visual score, or vessel sharpness of the left circumflex coronary artery (LCX) between the two sequences (all P values >0.050). The visual score and vessel sharpness of the right coronary artery and left anterior descending coronary artery (LAD) were significantly improved in dNAV-CMRA compared with sNAV-CMRA (all P values <0.050). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the detection of CAAs were not significantly different between the two sequences (all P values >0.050). Conclusions: Our findings demonstrated that both sNAV and dNAV in CMRA provide clinical application value in pediatric patients with CAAs and have similar diagnostic performance. Although the image quality of sNAV-CMRA is slightly inferior compared to that of dNAV-CMRA, sNAV-CMRA allows for a simpler scanning procedure.

5.
J Magn Reson Imaging ; 59(3): 825-834, 2024 Mar.
Article En | MEDLINE | ID: mdl-37338016

BACKGROUND: Few studies assessed myocardial inflammation using Cardiovascular Magnetic Resonance Imaging in Kawasaki disease (KD) patients. PURPOSE: To quantify myocardial edema in KD patients using T2 mapping and explore the independent predictors of T2 values. STUDY TYPE: Prospective. SUBJECTS: Ninety KD patients including 40 in acute phase (26 males, 65.0%) and 50 in chronic phase (34 males, 68.0%). Thirty-one healthy volunteers (21 males, 70.0%). FIELD STRENGTH/SEQUENCE: 3.0 T T2-weighted Turbo Spin Echo-Short Time of Inversion Recovery sequence, True fast imaging with steady precession flash sequence and fast low-angle shot 3D spoiled gradient echo sequence. ASSESSMENT: T2 values were compared among KD groups and controls. STATISTICAL TEST: Student's t test and Fisher's exact test; One-way analysis of variance; Pearson correlation analysis; Receiver operating curve analysis; Multivariable linear regression. RESULTS: Global T2 value of KD patients in acute phase was the highest, followed by those of chronic-phase patients and controls (38.83 ± 2.41 msec vs. 37.55 ± 2.28 msec vs. 36.05 ± 1.64 msec). Regional T2 values showed a same trend. There were no significant differences in global and regional T2 values between KD patients with and without coronary artery (CA) dilation, no matter in acute or chronic phase (all KD patients: P = 0.51, 0.51, 0.53, 0.72; acute KD: P = 0.61, 0.37, 0.33, 0.83; chronic KD: P = 0.65, 0.79, 0.62, 0.79). No significant difference was observed in global T2 values between KD patients with Z score > 5.0 and 2.0 < Z score ≤ 5.0 (P = 0.65). Multivariate analysis demonstrated that stage of disease (ß = -0.123) and heart rate (ß = 0.280) were independently associated with global T2 values. DATA CONCLUSION: The degree of myocardial edema was more severe in acute-phase than in chronic-phase KD patients. Myocardial edema persists in patients regardless of the existence or degree of CA dilation. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Mucocutaneous Lymph Node Syndrome , Male , Child , Humans , Prospective Studies , Myocardium/pathology , Magnetic Resonance Imaging/methods , Edema
6.
Eur Radiol ; 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37857903

OBJECTIVES: To assess the scan time, image quality, and diagnostic performance of self-navigated coronary MR angiography (SN-CMRA) for coronary aneurysm (CAA) detection in Kawasaki disease (KD) patients and compare it with diaphragm-navigated CMRA (DN-CMRA). MATERIALS AND METHODS: SN-CMRA and DN-CMRA were performed on 76 pediatric patients with KD (48 males, 6.75 ± 3.59 years). Thirty-three of whom underwent coronary CT angiography (CCTA)/invasive coronary angiography (ICA). The scan time and qualitative and quantitative image quality assessment were compared between the two sequences. The diagnostic performance for CAA detection by the two approaches using CCTA/ICA as the reference standard was compared on per-patient, per-vessel, and per-segment basis. RESULTS: The scan time of SN-CMRA was significantly shorter than that of DN-CMRA (7.49 ± 2.31 min vs. 10.03 ± 4.47 min, p < 0.001). There was no difference in overall and segmental image quality to reach the clinical diagnostic criteria between the two sequences (all p > 0.05). No significant difference in vessel length of the three main coronary arteries was found between the two approaches (all p > 0.05). Moreover, SN-CMRA showed no difference from DN-CMRA in contrast ratio of blood-myocardium (1.25 (interquartile range [IQR], 1.06 to 1.51) vs. 1.18 (IQR, 0.95 to 1.64), p = 0.706). There was no difference in the diagnostic accuracy of SN-CMRA and DN-CMRA for CAA detection on per-patient, per-vessel, or per-segment basis (all p > 0.05). CONCLUSION: SN-CMRA at 3T showed reliable diagnostic performance and application value for CAA detection in children with KD. Compared with DN-CMRA, SN-CMRA can simplify the scanning procedure and shorten the scan time, achieving comparable image quality and diagnostic accuracy. CLINICAL RELEVANCE STATEMENT: Coronary aneurysm in children with Kawasaki disease (KD) can be detected by self-navigated coronary MR angiography (CMRA) non-invasively and without radiation, achieving comparable image quality and diagnostic performance as diaphragm-navigated CMRA while shortening scanning time. It can provide reference for risk stratification and treatment management of KD. KEY POINTS: • Evaluating the size of coronary aneurysm is important for risk stratification and treatment of Kawasaki disease. • Self-navigated coronary MR angiography (SN-CMRA) shortens scan time and achieves comparable image quality and diagnostic performance compared with diaphragm-navigated coronary MR angiography. • SN-CMRA can evaluate coronary aneurysm non-invasively and without radiation, providing information for risk stratification and treatment.

7.
Mol Genet Genomic Med ; 11(3): e2124, 2023 03.
Article En | MEDLINE | ID: mdl-36538006

BACKGROUND: Short-rib thoracic dysplasia (SRTD) and Joubert syndrome (JS) are rare genetic ciliopathies, and individuals with either syndrome can manifest cerebellar malformation and variable developmental delays. However, neither of these conditions is easily diagnosed during pregnancy due to a limited fetal phenotype. Here, we investigated a fetus that was initially observed to have short limbs and polydactyly and discovered a compound heterozygous pathogenesis through exome sequencing (ES). METHODS: Simultaneous trio-ES and chromosome microarray analysis was provided for the fetus. The presence and effects of these variants on splicing were further validated at the DNA and RNA levels. RESULTS: Only short limbs and post-axial polydactyly of the fetus were detected during the second trimester. Two variants (c.3940+1G>A and c.3303G>A), affecting splicing of KIAA0586, were identified from amniocytes through ES and validated by Sanger sequencing. More intensive fetal monitoring was applied, and the fetus was also found to have deformed cerebellar malformation and a constricted thoracic cage. CONCLUSIONS: Herein, we report the genetic pathogenesis of SRTD and/or JS associated with KIAA0586 in a fetus. The novel splicing variants observed expand the spectrum of KIAA0586 in SRTD and/or JS. Based on the genetic data and the distinct corresponding phenotypes discovered by imaging examination, a comprehensive diagnosis was made during pregnancy and more valuable prognostic information was provided for the parents.


Osteochondrodysplasias , Polydactyly , Female , Humans , Pregnancy , Exome Sequencing , Fetus , Prenatal Diagnosis , Ribs , Heterozygote
8.
Clin Endocrinol (Oxf) ; 98(4): 578-586, 2023 04.
Article En | MEDLINE | ID: mdl-36536468

OBJECTIVE: Turner syndrome (TS) has an increased predisposition to ischaemic heart disease and the status of coronary microcirculation in TS is largely unknown. This study aims to evaluate myocardial microvascular function in TS using first-pass magnetic resonance perfusion imaging and determine significant risk factors contributing to microvascular dysfunction in the early stage. DESIGN: Perspective cohort study. PATIENTS: The study cohort consisted of 67 children and youth with TS and 32 age- and gender-matched controls. Measurements Clinical characteristics, left ventricle (LV) volume and function and cardiovascular magnetic resonance-derived myocardial perfusion parameters were assessed. Univariable and multivariable linear regression analyses were performed to assess the potential risk factors for microvascular dysfunction. RESULT: Microvascular perfusion decreased in TS in global and segmented myocardium as reflected in the lower upslopecor and maximum signal intensity (MaxSI) of LV myocardium compared to controls. Multivariable linear regression analysis indicated that age (ß = -0.107, 95% confidence interval [CI] = -0.201 to -0.013, p = .026) and being overweight/obese (ß = -1.155, CI = -2.134 to -0.176, p = .021) were independent impact factors of microvascular dysfunction. Subgroup analysis showed the upslopecor of older patients with TS decreased more significantly compared with that of normal controls. Upslopecor and MaxSI were lower in overweight/obese patients with TS than in patients with normal body mass index (BMI) and controls. CONCLUSION: Myocardial microvascular dysfunction can occur in children and youth patients with TS. Age and overweight/obesity were the independent risk factors of microvascular dysfunction, which imply the importance of lowering BMI for the prevention of coronary heart disease in young TS population.


Myocardial Ischemia , Myocardial Perfusion Imaging , Turner Syndrome , Humans , Adolescent , Child , Myocardial Perfusion Imaging/methods , Overweight , Cohort Studies , Coronary Circulation , Magnetic Resonance Imaging , Risk Factors , Obesity , Predictive Value of Tests , Magnetic Resonance Spectroscopy
9.
Int J Nanomedicine ; 17: 3809-3820, 2022.
Article En | MEDLINE | ID: mdl-36072961

Introduction: Free radicals in oxidative stress are known to play a pathogenic role in sepsis. A major clinical challenge associated with sepsis is sepsis-associated encephalopathy (SAE). The rapid increase of free radicals in the brain promotes SAE progression. Here, macromolecule free radicals in the mouse brain were uniquely detected by immunospin trapping (IST) and magnetic resonance imaging (MRI). Methods: The new strategy uses spin trapping agent DEPMPO-biotin to capture macromolecule free radicals in lesions and form biotin-DEPMPO-radical adducts. Then, a targeting MRI probe, avidin-BSA@Gd-ESIO, was used to detect the radical adducts through the highly specific binding of avidin and biotin. The avidin-BSA@Gd-ESIO probe was synthesized and systematically characterized. The detection capability of the new strategy was evaluated in vitro and in vivo using a confocal microscope and a 7T MRI, respectively. Results: In reactive oxygen species (ROS)-induced microglial cells, the accumulation of the avidin-BSA@Gd-ESIO probe in the DEPMPO-biotin-treated group was significantly higher than that of control groups. In vivo MRI T1 signal intensities were significantly higher within the hippocampus, striatum, and medial cortex of the brain in mice with a mild or severe degree of sepsis compared with the sham control group. Histological analysis validated that the distribution of the avidin-BSA@Gd-ESIO probe in brain tissue slices was consistent with the MRI images. The fluorescence signals of ROS and avidin-BSA@Gd-ESIO probe were overlapped and visualized using immunofluorescent staining. By evaluating the T1 signal changes over time in different areas of the brain, we estimated the optimal MRI detection time to be 30 minutes after the probe administration. Discussion: This method can be applied specifically to assess the level of macromolecular free radicals in vivo in a simple and stable manner, providing a pathway for a more comprehensive understanding of the role of free radicals in SAE.


Sepsis-Associated Encephalopathy , Sepsis , Animals , Avidin , Biotin , Free Radicals/chemistry , Macromolecular Substances , Magnetic Resonance Imaging/methods , Mice , Reactive Oxygen Species , Sepsis/complications , Sepsis/diagnostic imaging , Spin Trapping/methods
10.
BMJ Open ; 12(1): e055374, 2022 Jan 11.
Article En | MEDLINE | ID: mdl-35017252

OBJECTIVE: This meta-analysis assessed the associations of myocardial fibrosis detected by late gadolinium-enhanced (LGE)-MRI with the risk of major adverse cardiac and cerebrovascular events (MACCEs) and major adverse cardiac events (MACEs) in patients with diabetes. DESIGN: Systematic review and meta-analysis reported in accordance with the guidelines of the Meta-analysis of Observational Studies in Epidemiology statement. DATA SOURCES: We searched the Medline, Embase and Cochrane by Ovid databases for studies published up to 27 August 2021. ELIGIBILITY CRITERIA: Prospective or respective cohort studies were included if they reported the HR and 95% CIs for MACCEs/MACEs in patients with either type 1 or 2 diabetes and LGE-MRI-detected myocardial fibrosis compared with patients without LGE-MRI-detected myocardial fibrosis and if the articles were published in the English language. DATA EXTRACTION AND SYNTHESIS: Two review authors independently extracted data and assessed the quality of the included studies. Pooled HRs and 95% CIs were analysed using a random effects model. Heterogeneity was assessed using forest plots and I2 statistics. RESULTS: Eight studies with 1121 patients with type 1 or type 2 diabetes were included in this meta-analysis, and the follow-up ranged from 17 to 70 months. The presence of myocardial fibrosis detected by LGE-MRI was associated with an increased risk for MACCEs (HR: 2.58; 95% CI 1.42 to 4.71; p=0.002) and MACEs (HR: 5.28; 95% CI 3.20 to 8.70; p<0.001) in patients with diabetes. Subgroup analysis revealed that ischaemic fibrosis detected by LGE was associated with MACCEs (HR 3.80, 95% CI 2.38 to 6.07; p<0.001) in patients with diabetes. CONCLUSIONS: This study demonstrated that ischaemic myocardial fibrosis detected by LGE-MRI was associated with an increased risk of MACCEs/MACEs in patients with diabetes and may be an imaging biomarker for risk stratification. Whether LGE-MRI provides incremental prognostic information with respect to MACCEs/MACEs over risk stratification by conventional cardiovascular risk factors requires further study.


Diabetes Mellitus, Type 2 , Gadolinium , Contrast Media , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Fibrosis , Humans , Language , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Predictive Value of Tests , Prognosis , Prospective Studies
11.
Eur J Radiol ; 145: 110039, 2021 Dec.
Article En | MEDLINE | ID: mdl-34818610

PURPOSE: To quantify global and regional left ventricular (LV) strain parameters in patients with Kawasaki disease (KD) using cardiovascular magnetic resonance (CMR) tissue tracking and assess the association of coronary artery dilation (CA dilation) with LV systolic dysfunction. METHODS: Thirty-one KD patients with CA dilation, 22 patients without CA dilation and 27 age- and sex-matched normal controls underwent 3.0 T CMR examination. Z score of >2 was defined as CA dilation. Global LV strain parameters and regional LV strain parameters in 16 American Heart Association segmentation, including radial, circumferential and longitudinal peak strain (PS) and LV function were measured and compared among groups. RESULTS: No significant difference in LV ejection fraction has been observed among controls, KD patients with CA dilation and without CA dilation (all p > 0.05). However, global longitudinal PS (GLPS) was lower in groups with CA dilation than those without CA dilation (-12.6 ± 4.1% vs -14.9 ± 2.6%, p < 0.05). For regional strain parameters, the segments with CA dilation (n = 301) were lower than those in both normal controls (n = 416) and segments without CA dilation (n = 547) in regional radial, circumferential and longitudinal PS (all p < 0.05). The severity of CA dilation was positively correlated to GLPS and regional longitudinal PS (r = 0.388 and r = 0.222; both p < 0.05) in KD patients. After adjusting for clinical characteristics, the multivariate analysis demonstrated that Z score was independently associated with GLPS in KD patients (ß = 0.469, p = 0.000, model R2 = 0.355). CONCLUSIONS: CMR tissue tracking could sensitively identify subclinical LV dysfunction in KD patients with CA dilation. LV systolic dysfunction occurs particularly in the myocardium dominated by the dilated coronary artery. CA dilation is an independent predictor of LV systolic dysfunction.


Mucocutaneous Lymph Node Syndrome , Ventricular Dysfunction, Left , Coronary Vessels/diagnostic imaging , Dilatation , Humans , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/diagnostic imaging , Stroke Volume , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left
14.
Int J Cardiol ; 325: 89-95, 2021 02 15.
Article En | MEDLINE | ID: mdl-33038407

PURPOSE: Our study aimed to comprehensively explore efficient prognostic indicators in idiopathic dilated cardiomyopathy (IDCM) patients with reduced left ventricular ejection fraction (LVEF<40%). BACKGROUND: Prognostic value of cardiac magnetic resonance(CMR) parameters for IDCM have been inconsistent. METHODS: 126 IDCM patients with reduced LVEF (<40%) were retrospectively enrolled. Cardiac function parameters, myocardial strain indices and myocardial fibrosis were evaluated. Laboratory data also were analyzed. The endpoint was a combination of major adverse cardiac events (MACEs), including cardiac death, heart transplantation, and rehospitalization. Prognostic value was evaluated by the Kaplan-Meier method and Cox regression. RESULTS: During a median follow-up of 31 months, 44 patients experienced MACEs, including 9 deaths, 1 heart transplantation, and 34 rehospitalizations due to heart failure. Univariate and multivariate Cox analyses showed that cardiac function and myocardial strain indexes were not associated with the prognosis of IDCM (all p>0.05). NT-proBNP (HR 1.5, 95%CI: 1.053 to 2.137), Late­gadolinium enhancement(LGE) mass (HR 1.022, 95%CI: 1.005 to 1.038), and LGE mass/left ventricle mass were significant predictors (HR 1.027, 95%CI: 1.007 to 1.046) for MACEs, all p < 0.05. Besides, poorest prognosis was observed in IDCM patients with positive LGE combined with NT-proBNP (log-rank = 27.261, p ≤ 0.001). CONCLUSION: NT-proBNP and extent of LGE were reliable predictors in IDCM patients with reduced LVEF. Additionally, presence of LGE combined with NT-proBNP showed the strongest prognostic value in IDCM with reduced LVEF. Myocardial strain parameters seemed to have no prognostic value in IDCM patients with reduced LVEF.


Cardiomyopathy, Dilated , Cardiomyopathy, Dilated/diagnostic imaging , Contrast Media , Gadolinium , Humans , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine , Predictive Value of Tests , Prognosis , Retrospective Studies , Stroke Volume , Ventricular Function, Left
15.
Front Med (Lausanne) ; 7: 518, 2020.
Article En | MEDLINE | ID: mdl-32923449

Background: Despite an increase in the familiarity of the medical community with the epidemiological and clinical characteristics of coronavirus disease 2019 (COVID-19), there is presently a lack of rapid and effective risk stratification indicators to predict the poor clinical outcomes of COVID-19 especially in severe patients. Methods: In this retrospective single-center study, we included 117 cases confirmed with COVID-19. The clinical, laboratory, and imaging features were collected and analyzed during admission. The Multi-lobular infiltration, hypo-Lymphocytosis, Bacterial coinfection, Smoking history, hyper-Tension and Age (MuLBSTA) Score and Confusion, Urea, Respiratory rate, Blood pressure, Age 65 (CURB65) score were used to assess the death and intensive care unit (ICU) risks in all patients. Results: Among of all 117 hospitalized patients, 21 (17.9%) patients were admitted to the ICU care, and 5 (4.3%) patients were died. The median hospital stay was 12 (10-15) days. There were 18 patients with MuLBSTA score ≥ 12 points and were all of severe type. In severe type, ICU care and death patients, the proportion with MuLBSTA ≥ 12 points were greater than that of CURB65 score ≥ 3 points (severe type patients, 50 vs. 27.8%; ICU care, 61.9 vs. 19.0%; death, 100 vs. 40%). For the MuLBSTA score, the ROC curve showed good efficiency of diagnosis death (area under the curve [AUC], 0.956; cutoff value, 12; specificity, 89.5%; sensitivity, 100%) and ICU care (AUC, 0.875; cutoff value, 11; specificity, 91.7%; sensitivity, 71.4%). The K-M survival analysis showed that patients with MuLBSTA score ≥ 12 had higher risk of ICU (log-rank, P = 0.001) and high risk of death (log-rank, P = 0.000). Conclusions: The MuLBSTA score is valuable for risk stratification and could effectively screen high-risk patients at admission. The higher score at admission have higher risk of ICU care and death in patients infected with COVID.

16.
J Am Heart Assoc ; 9(18): e016807, 2020 09 15.
Article En | MEDLINE | ID: mdl-32806998

Background Increasing studies demonstrated that the cardiac involvements are related to coronavirus disease 2019 (COVID-19). Thus, we investigated the clinical characteristics of patients with COVID-19 and further determined the risk factors for cardiac involvement in them. Methods and Results We analyzed data from 102 consecutive laboratory-confirmed and hospitalized patients with COVID-19 (52 women aged 19-87 years). Epidemiologic and demographic characteristics, clinical features, routine laboratory tests (including cardiac injury biomarkers), echocardiography, electrocardiography, chest imaging findings, management methods, and clinical outcomes were collected. Patients were divided into acute cardiac injury, with and without cardiac marker abnormities groups according to different level of cardiac markers. In this research, cardiac involvement was found in 72 of the 102 (70.6%) patients: tachycardia (n=20), electrocardiography abnormalities (n=23), echocardiography abnormalities (n=59), elevated myocardial enzymes (n=55), and acute cardiac injury (n=9). Eight patients with acute cardiac injury were aged >60 years; seven of them had ≥2 underlying comorbidities (hypertension, diabetes mellitus, cardiovascular diseases, chronic obstructive pulmonary disease, and chronic kidney disease). Novel coronavirus pneumonia was much more severe in the patients with acute cardiac injury than in patients with nondefinite acute cardiac injury (P<0.001). Multivariate analyses showed that CRP (C-reactive protein) levels, old age, novel coronavirus pneumonia severity, and underlying comorbidities were the risk factors for cardiac abnormalities in patients with COVID-19. Conclusions Cardiac involvements are common in patients with COVID-19. Elevated CRP levels, old age, underlying comorbidities, and novel coronavirus pneumonia severity are the main risk factors for cardiac involvement in patients with COVID-19. More attention should be given to cardiovascular protection during COVID-19 treatment for mortality reduction. Registration URL: https://www.chictr.org; Unique identifier: ChiCTR2000029955.


Betacoronavirus/pathogenicity , Coronavirus Infections/diagnosis , Heart Diseases/diagnosis , Pneumonia, Viral/diagnosis , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19 , China/epidemiology , Comorbidity , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Coronavirus Infections/virology , Female , Heart Diseases/epidemiology , Heart Diseases/therapy , Heart Diseases/virology , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Predictive Value of Tests , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Up-Regulation , Young Adult
17.
BMC Pediatr ; 20(1): 243, 2020 05 22.
Article En | MEDLINE | ID: mdl-32443968

BACKGROUND: Methylmalonic Aciduria and Homocystinemia, cobalamin C (cblC) is an inherited disease of vitamin B12 metabolism with a wide spectrum of clinical manifestations. cblC presenting with pulmonary hypertension (PH) as leading sympotom is rare and easily misdiagnosed because of limited awareness. Timely diagnosis is crucial by the relentless progression without appropriate treatment. CASE PRESENTATION: We reported a 12-year-old girl with a 3-year history of progressively reduced activity tolerance and a 3-month history of orthopnea. Metabolic testing revealed increased levels of plasma homocysteine and urine methylmalonic acid. cblC deficiency was subsequently confirmed by genetic testing. The patient was treated with hydroxocobalamin, betaine, folinic acid and levocarnitine for cblC disease. Sildenafil, bosentan, spironolactone and hydrochlorothiazide was administrated for PH and right heart failure. At 3-month follow-up, she had an apparent resolution of dyspnea and cyanosis. Metabolic abnormalities resolved the decrease of plasma homocysteine and urine methylmalonic acid. A right heart catheterization showed a reduced pulmonary pressure. CONCLUSIONS: This case emphasizes the importance of an early diagnosis and initiation of treatment for cblC deficiency. Unexplained PH in children and young adults should prompt metabolic screening for the differential diagnosis.


Amino Acid Metabolism, Inborn Errors , Homocystinuria , Hypertension, Pulmonary , Vitamin B 12 Deficiency , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/diagnosis , Child , Female , Homocystinuria/complications , Homocystinuria/diagnosis , Homocystinuria/drug therapy , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Methylmalonic Acid , Young Adult
18.
NMR Biomed ; 32(11): e4158, 2019 11.
Article En | MEDLINE | ID: mdl-31393647

We developed a novel manganese (Mn2+ ) chelate for magnetic resonance imaging (MRI) assessment of myocardial viability in acute and chronic myocardial infarct (MI) models, and compared it with Gadolinium-based delay enhancement MRI (Gd3+ -DEMRI) and histology. MI was induced in 14 rabbits by permanent occlusion of the left circumflex coronary artery. Gd3+ -DEMRI and Mn2+ chelate-based delayed enhancement MRI (Mn2+ chelate-DEMRI) were performed at 7 days (acute MI, n = 8) or 8 weeks (chronic MI, n = 6) after surgery with sequential injection of 0.15 mmol/kg Gd3+ and Mn2+ chelate. The biodistribution of Mn2+ in tissues and blood was measured at 1.5 and 24 h. Blood pressure, heart rate (HR), left ventricular (LV) function, and infarct fraction (IF) were analyzed, and IF was compared with the histology. The Mn2+ chelate group maintained a stable hemodynamic status during experiment. For acute and chronic MI, all rabbits survived without significant differences in HR or LV function before and after injection of Mn2+ chelate or Gd3+ (p > 0.05). Mn2+ chelate mainly accumulated in the kidney, liver, spleen, and heart at 1.5 h, with low tissue uptake and urine residue at 24 h after injection. In the acute MI group, there was no significant difference in IF between Mn2+ chelate-DEMRI and histology (22.92 ± 2.21% vs. 21.79 ± 2.25%, respectively, p = 0.87), while Gd3+ -DEMRI overestimated IF, as compared with histology (24.54 ± 1.73%, p = 0.04). In the chronic MI group, there was no significant difference in IF between the Mn2+ chelate-DEMRI, Gd3+ -DEMRI, and histology (29.50 ± 11.39%, 29.95 ± 9.40%, and 29.00 ± 10.44%, respectively, p > 0.05), and all three were well correlated (r = 0.92-0.96, p < 0.01). We conclude that the use of Mn2+ chelate-DEMRI is reliable for MI visualization and identifies acute MI more accurately than Gd3+ -DEMRI.


Chelating Agents/chemistry , Magnetic Resonance Imaging , Manganese/chemistry , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Myocardium/pathology , Animals , Chronic Disease , Gadolinium/chemistry , Hemodynamics , Kinetics , Male , Rabbits , Tissue Distribution
19.
J Cardiovasc Magn Reson ; 18(1): 92, 2016 Dec 12.
Article En | MEDLINE | ID: mdl-27955698

BACKGROUND: Myocardial fibrosis is being increasingly recognised as a common final pathway of a wide range of diseases. Thus, the development of an accurate and convenient method to evaluate myocardial fibrosis is of major importance. Although T1 mapping is a potential alternative for myocardial biopsy, validation studies are limited to small numbers and vary regarding technical facets, and include only a restricted number of disease. A systematic review and meta-analysis was conducted to objectively and comprehensively evaluate the performance of T1 mapping on the quantification of myocardial fibrosis using cardiovascular magnetic resonance (CMR). METHODS: PubMed, EMBASE and the Cochrane Library databases were searched for studies applying T1 mapping to measure myocardial fibrosis and that validated the results via histological analysis. A pooled correlation coefficient between the CMR and histology measurements was used to evaluate the performance of the T1 mapping. RESULTS: A total of 15 studies, including 308 patients who had CMR and myocardial biopsy were included and the pooled correlation coefficient between ECV measured by T1 mapping and biopsy for the selected studies was 0.884 (95% CI: 0.854, 0.914) and was not notably heterogeneous chi-squared = 7.44; P = 0.489 for the Q test and I^2 = 0.00%). CONCLUSIONS: The quantitative measurement of myocardial fibrosis via T1 mapping is associated with a favourable overall correlation with the myocardial biopsy measurements. Further studies are required to determine the calibration of the T1 mapping results for the biopsy findings of different cardiomyopathies.


Heart Diseases/diagnostic imaging , Heart Diseases/pathology , Magnetic Resonance Imaging , Myocardium/pathology , Biopsy , Chi-Square Distribution , Fibrosis , Humans , Predictive Value of Tests , Reproducibility of Results
20.
NMR Biomed ; 29(12): 1670-1677, 2016 12.
Article En | MEDLINE | ID: mdl-27696558

Diffusion kurtosis imaging (DKI) has been shown to augment diffusion-weighted imaging (DWI) for the definition of irreversible ischemic injury. However, the complexity of cerebral structure/composition makes the kurtosis map heterogeneous, limiting the specificity of kurtosis hyperintensity to acute ischemia. We propose an Inherent COrrelation-based Normalization (ICON) analysis to suppress the intrinsic kurtosis heterogeneity for improved characterization of heterogeneous ischemic tissue injury. Fast DKI and relaxation measurements were performed on normal (n = 10) and stroke rats following middle cerebral artery occlusion (MCAO) (n = 20). We evaluated the correlations between mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) derived from the fast DKI sequence and relaxation rates R1 and R2 , and found a highly significant correlation between MK and R1 (p < 0.001). We showed that ICON analysis suppressed the intrinsic kurtosis heterogeneity in normal cerebral tissue, enabling automated tissue segmentation in an animal stroke model. We found significantly different kurtosis and diffusivity lesion volumes: 147 ± 59 and 180 ± 66 mm3 , respectively (p = 0.003, paired t-test). The ratio of kurtosis to diffusivity lesion volume was 84% ± 19% (p < 0.001, one-sample t-test). We found that relaxation-normalized MK (RNMK), but not MD, values were significantly different between kurtosis and diffusivity lesions (p < 0.001, analysis of variance). Our study showed that fast DKI with ICON analysis provides a promising means of demarcation of heterogeneous DWI stroke lesions.


Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Pattern Recognition, Automated/methods , Acute Disease , Algorithms , Animals , Image Enhancement/methods , Machine Learning , Male , Models, Biological , Models, Statistical , Rats , Rats, Wistar , Reproducibility of Results , Sensitivity and Specificity , Statistics as Topic
...