Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.496
Filtrar
1.
Int J Biol Macromol ; 280(Pt 1): 135688, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288853

RESUMEN

Prenyltransferases play a pivotal role in the isoprenoid biosynthesis and transfer in insects. In the current study, two classes of prenyltransferases (MhieFPPS1 and MhieFPPS2, MhiePFT-ß and MhiePF/GGT-α) were identified in the leaf beetle, Monolepta hieroglyphica. Phylogenetic analysis revealed that MhieFPPS1, MhieFPPS2, MhiePFT-ß and MhiePF/GGT-α were clustered in one clade with homologous in insects. Moreover, MhieFPPS2 lacked one aspartate-rich motif SARM. Molecular docking and kinetic analysis indicated that the (E)-GPP displayed higher affinity with MhieFPPS1 compared to DMAPP within the binding pocket containing metal binding sites (MG). The other class of prenyltransferases (MhiePFT-ß and MhiePF/GGT-α) lack the aspartate-rich motif. Docking results indicated that binding site of MhiePFT-ß involved divalent metal ions (Zn) and bound farnesyl or geranylgeranyl. In vitro, only recombiant MhieFPPS1 could catalyze the formation of (E)-farnesol against different combination of substrates, including IPP/DMAPP and IPP/(E)-GPP, highlighting the importance of SARM for enzyme activities. Kinetic analysis further indicated that MhiePFT-ß operated via Zn2+-dependent substrate binding, while MhiePF/GGT-α stabilized the ß-subunit during catalytic reaction. These findings contribute to a valuable insight in to understanding of the mechanisms involved in the biosynthesis and delivery of isoprenoid products in beetles.

2.
J Org Chem ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298438

RESUMEN

A highly effective external photocatalyst- and additive-free method for the phosphorylation of 3,4-dihydroquinoxalin-2(1H)-ones to produce phosphorylated dihydroquinoxalin-2(1H)-ones has been reported. A wide variety of phosphorylated products were formed in good to excellent yields. Preliminary mechanistic studies reveal that the phosphorylation process involves an EnT process, a SET process, a HAT process, and a deprotonation process.

3.
Front Immunol ; 15: 1450998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281670

RESUMEN

Programmed cell death (PCD) is a fundamental biological process for maintaining cellular equilibrium and regulating development, health, and disease across all living organisms. Among the various types of PCD, apoptosis plays a pivotal role in numerous diseases, notably cancer. Cancer cells frequently develop mechanisms to evade apoptosis, increasing resistance to standard chemotherapy treatments. This resistance has prompted extensive research into alternative mechanisms of programmed cell death. One such pathway is oncosis, characterized by significant energy consumption, cell swelling, dilation of the endoplasmic reticulum, mitochondrial swelling, and nuclear chromatin aggregation. Recent research suggests that oncosis can impact conditions such as chemotherapeutic cardiotoxicity, myocardial ischemic injury, stroke, and cancer, mediated by specific oncosis-related proteins. In this review, we provide a detailed examination of the morphological and molecular features of oncosis and discuss various natural or small molecule compounds that can induce this type of cell death. Additionally, we summarize the current understanding of the molecular mechanisms underlying oncosis and its role in both normal physiology and pathological conditions. These insights aim to illuminate future research directions and propose innovative strategies for leveraging oncosis as a therapeutic tool against human diseases and cancer resistance.


Asunto(s)
Apoptosis , Neoplasias , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Transducción de Señal , Muerte Celular , Mitocondrias/metabolismo
4.
Phys Life Rev ; 51: 33-59, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39288541

RESUMEN

Parrondo's paradox refers to the paradoxical phenomenon of combining two losing strategies in a certain manner to obtain a winning outcome. It has been applied to uncover unexpected outcomes across various disciplines, particularly at different spatiotemporal scales within ecosystems. In this article, we provide a comprehensive review of recent developments in Parrondo's paradox within the interdisciplinary realm of the physics of life, focusing on its significant applications across biology and the broader life sciences. Specifically, we examine its relevance from genetic pathways and phenotypic regulation, to intercellular interaction within multicellular organisms, and finally to the competition between populations and species in ecosystems. This phenomenon, spanning multiple biological domains and scales, enhances our understanding of the unified characteristics of life and reveals that adaptability in a drastically changing environment, rather than the inherent excellence of a trait, underpins survival in the process of evolution. We conclude by summarizing our findings and discussing future research directions that hold promise for advancing the field.

5.
Front Oncol ; 14: 1416888, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234398

RESUMEN

Introduction: Patients with renal insufficiency are more prone to postoperative complications (PCs). Studies have shown that minor changes in serum creatinine (SCr), immediately post-surgery, can aid in assessing patients' renal function. This study aimed to explore the relationship between the changes in SCr and PCs in patients with gastric cancer (GC). Materials and methods: We prospectively collected data regarding the SCr of 530 GC patients, within 2 weeks before surgery and within 24 hours after surgery in our hospital (2014-2016). The patients were divided into three groups according to the level of SCr change after surgery: reduced (<10%), normal (10%), and elevated (>10%) creatinine groups. Univariate and multivariate logistic analysis were performed to evaluate its correlation with short-term PCs in the patients. The R language was used to construct a nomogram. Results: 83, 217, and 230 patients were assigned to the elevated, reduced, and normal SCr groups, respectively. Multivariate analysis showed that the reduced and elevated SCr groups were independently associated with the occurrence of PCs and severe postoperative complications (SPCs), respectively. Additionally, postsurgical SCr change, age, hypoalbuminemia, total gastrectomy, combined resection, and laparoscopy, were independently related to PCs. Combining the above influential factors, the predictive model can distinguish patients with PCs more reliably (c-index is 0.715). Conclusion: Post-surgery, reduced SCr is a protective factor for PCs, while elevated serum creatinine is an independent risk factor for SPCs. Our nomogram can identify GC patients with high risks of PCs.

6.
Cell Discov ; 10(1): 92, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223112

RESUMEN

Human ABC transporters ABCD1-3 are all localized on the peroxisomal membrane and participate in the ß-oxidation of fatty acyl-CoAs, but they differ from each other in substrate specificity. The transport of branched-chain fatty acids from cytosol to peroxisome is specifically driven by ABCD3, dysfunction of which causes severe liver diseases such as hepatosplenomegaly. Here we report two cryogenic electron microscopy (cryo-EM) structures of ABCD3 bound to phytanoyl-CoA and ATP at resolutions of 2.9 Å and 3.2 Å, respectively. A pair of phytanoyl-CoA molecules were observed in ABCD3, each binding to one transmembrane domain (TMD), which is distinct from our previously reported structure of ABCD1, where each fatty acyl-CoA molecule strongly crosslinks two TMDs. Upon ATP binding, ABCD3 exhibits a conformation that is open towards the peroxisomal matrix, leaving two extra densities corresponding to two CoA molecules deeply embedded in the translocation cavity. Structural analysis combined with substrate-stimulated ATPase activity assays indicated that the present structures might represent two states of ABCD3 in the transport cycle. These findings advance our understanding of fatty acid oxidation and the molecular pathology of related diseases.

7.
Langmuir ; 40(37): 19739-19750, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39219094

RESUMEN

Depression is a debilitating mental illness that severely threatens millions of individuals and public health. Because of the multifactorial etiologies, there is currently no cure for depression; thus, it is urgently imperative to find alternative antidepressants and strategies. Growing evidence underscores the prominent role of oxidative stress as key pathological hallmarks of depression, making oxidative stress a potential therapeutic target. In this study, we report a N-doped carbon dot nanozyme (CDzyme) with excellent antioxidant capacity for treating depression by remodeling redox homeostasis and gut microbiota. The CDzymes prepared via microwave-assisted fast polymerization of histidine and glucose exhibit superior biocompatibility. Benefiting from the unique structure, CDzymes can provide abundant electrons, hydrogen atoms, and protons for reducing reactions, as well as catalytic sites to mimic redox enzymes. These mechanisms collaborating endow CDzymes with broad-spectrum antioxidant capacity to scavenge reactive oxygen and nitrogen species (•OH, O2-•, H2O2, ONOO-), and oxygen/nitrogen centered free radicals. A depression animal model was established by chronic unpredictable mild stress (CUMS) to evaluate the therapeutic efficacy of CDzymes from the behavioral, physiological, and biochemical index and intestinal flora assessments. CDzymes can remarkably improve depression-like behaviors and key neurotransmitters produced in hippocampus tissues and restore the gut microbiota compositions and the amino acid metabolic functions, proving the potential in treating depression through the intestinal-brain axis system. This study will facilitate the development of intestinal flora dysbiosis nanomedicines and treatment strategies for depression and other oxidative stress related multifactorial diseases.


Asunto(s)
Antioxidantes , Carbono , Depresión , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Carbono/química , Carbono/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Depresión/tratamiento farmacológico , Ratones , Estrés Oxidativo/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Masculino , Puntos Cuánticos/química , Antidepresivos/farmacología , Antidepresivos/química
8.
J Anal Methods Chem ; 2024: 8062001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268058

RESUMEN

Background: The primary pathogen responsible for bronchoscope contamination is Pseudomonas aeruginosa. Conventional techniques for bronchoscopy disinfection and pathogen identification methods are characterized by time-consuming and operation complexly. The objective of this research is to establish a prompt and precise method for the identification of Pseudomonas aeruginosa, with the ultimate goal of mitigating the risk of nosocomial infections linked to this pathogen. Methods: The magnetic nanoparticles (MNPs) were synthesized in a single step, followed by the optimization of the coating process with antibodies and invertase to produce the bifunctionalized IMIc. Monoclonal antibodies were immobilized on microplates for the specific capture and enrichment of Pseudomonas aeruginosa. Upon the presence of Pseudomonas aeruginosa, the monoclonal antibodies, the test sample, and the IMIc formed sandwich structures. The subsequent addition of a sucrose solution allowed for the detection of glucose produced through invertase hydrolysis by a personal glucose meter, enabling quantitative assessment of Pseudomonas aeruginosa concentration. Results: TEM image demonstrates that the MNPs exhibit a consistent spherical shape. NTA determined that the grain diameter of magnetic nanoparticles was 200 nm. FTIR spectrum revealed the successful modification of two carboxyl groups on the MNPs. The optimization of the incubation pH of the microplate-coated antibody was 7. The optimization of the incubation time of the microplate-coated antibody was 2 h. The optimization of the ligation pH for the polyclonal antibody was 5. Reaction times of polyclonal antibodies linked to magnetic beads was 1 h. The pH of invertase linked by magnetic beads was 4. Conclusion: This article presents a novel qualitative and quantitative immunoassay for point-of-care monitoring of P. aeruginosa utilizing PGM as a readout. The PGM represents a convenient and accurate quantitative detection method suitable for potential clinical diagnostic applications.

9.
Future Oncol ; : 1-8, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268916

RESUMEN

Extremity soft tissue sarcoma (ESTS) is a rare malignant nonepithelial disease, calling for combined modality treatments with surgery to further improve local control rates and long-term survival, especially in patients with multiple local recurrences with or without risk of amputation. In this double-arm, open-label, Phase II clinical trial, we will enroll 30 patients with pathologically confirmed ESTS without nodal involvement or distant metastases. Patients are randomly assigned to the combination treatment group or the radiation monotherapy group. Additionally, tumor and biological samples will be obtained directly before and after neoadjuvant therapy, allowing for studies of immune response and primary drug resistance mechanisms.Clinical Trial Registration: ChiCTR2200060659 (http://www.chictr.org.cn) (ClinicalTrials.gov).


[Box: see text].

10.
Mol Neurobiol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39271627

RESUMEN

"Brain fog," a persistent cognitive impairment syndrome, stands out as a significant neurological aftermath of coronavirus disease 2019 (COVID-19). Yet, the underlying mechanisms by which COVID-19 induces cognitive deficits remain elusive. In our study, we observed an upregulation in the expression of genes linked to the inflammatory response and oxidative stress, whereas genes associated with cognitive function were downregulated in the brains of patients infected with COVID-19. Through single-nucleus RNA sequencing (snRNA-seq) analysis, we found that COVID-19 infection triggers the immune responses in microglia and astrocytes and exacerbates oxidative stress in oligodendrocytes, oligodendrocyte progenitors (OPCs), and neurons. Further investigations revealed that COVID-19 infection elevates LUC7L2 expression, which inhibits mitochondrial oxidative phosphorylation (OXPHOS) and suppresses the expression of mitochondrial complex genes such as MT-ND1, MT-ND2, MT-ND3, MT-ND4L, MT-CYB, MT-CO3, and MT-ATP6. A holistic approach to protect mitochondrial complex function, rather than targeting a single molecular, should be an effective therapeutic strategy to prevent and treat the long-term consequences of "long COVID."

11.
Neurol Sci ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39266808

RESUMEN

BACKGROUND: Primary Meige syndrome (PMS) is a rare form of dystonia, and comparative analysis of globus pallidus internal deep brain stimulation (GPi-DBS), subthalamic nucleus deep brain stimulation (STN-DBS), and pallidotomy has been lacking. This study aims to compare the efficacy, safety, and psychiatric features of GPi-DBS, STN-DBS, and pallidotomy in patients with PMS. METHODS: This prospective cohort study was divided into three groups: GPi-DBS, STN-DBS, and pallidotomy. Clinical assessments, including motor and non-motor domains, were evaluated at baseline and at 1 year and 3 years after neurostimulation/surgery. RESULTS: Ninety-eight patients were recruited: 46 patients received GPi-DBS, 34 received STN-DBS, and 18 underwent pallidotomy. In the GPi-DBS group, the movement score of the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) improved from a mean (SE) of 13.8 (1.0) before surgery to 5.0 (0.7) (95% CI, -10.5 to -7.1; P < 0.001) at 3 years. Similarly, in the STN-DBS group, the mean (SE) score improved from 13.2 (0.8) to 3.5 (0.5) (95% CI, -10.3 to -8.1; P < 0.001) at 3 years, and in the pallidotomy group, it improved from 14.9 (1.3) to 6.0 (1.1) (95% CI, -11.3 to -6.5; P < 0.001) at 3 years. They were comparable therapeutic approaches for PMS that can improve motor function and quality of life without non-motor side effects. CONCLUSIONS: DBS and pallidotomy are safe and effective treatments for PMS, and an in-depth exploration of non-motor symptoms may be a new entry point for gaining a comprehensive understanding of the pathophysiology.

12.
Phytomedicine ; 134: 155957, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39181101

RESUMEN

BACKGROUND: Type 2 diabetes (T2DM) is one of the major metabolic diseases and poses a serious challenge to human life and global economic development. Jinqi Jiangtang Tablets (JQJT) is effective in ameliorating the effects of T2DM, but the mechanism of JQJT is unclear. PURPOSE: This study integrated metabolomics and transcriptomics to reveal the mechanism by which JQJT improves T2DM. METHODS: The T2DM mouse model was established, and the effects of JQJT on improving T2DM were evaluated by determining the levels of blood lipids, fasting blood glucose (FBG), insulin metabolism and hepatic lipid accumulation in mice after JQJT administration for 8 weeks. Serum metabolites were detected using ultra-performance liquid chromatography/quadrupole time-of-flight-tandem mass spectrometry (UPLC-Q-TOF-MS) technology, and mouse liver differential genes were detected using transcriptomic technology. Correlation analysis was used to extract metabolites and RNA with correlations, and potential pathways were enriched and constructed using the common pathway analysis function of MetaboAnalyst 5.0. Finally, the expression of key target proteins and genes was verified by Western blot (WB) and Polymerase Chain Reaction (PCR) to further elucidate the mechanism by which JQJT improves T2DM. RESULTS: JQJT reduced FBG and lipid levels, improved insulin resistance (IR) and hepatic lipoatrophy in mice. A total of 35 differentially abundant metabolites were identified by metabolomics, and 328 differential genes were detected by transcriptomics. The integrated metabolomics and transcriptomics results suggested that JQJT may ameliorate T2DM mainly by regulating glucose and lipid metabolic pathways. WB and PCR results showed that JQJT regulates the insulin signaling pathway, involved in fatty acid metabolism, glycogen synthesis and catabolism. CONCLUSIONS: JQJT improved IR in T2DM mice by regulating the insulin signaling pathway, improving glycogen synthesis and glycolysis, and increasing hepatic triglyceride and fatty acid metabolism.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Hígado , Metabolómica , Animales , Medicamentos Herbarios Chinos/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratones , Glucemia/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Insulina/sangre , Insulina/metabolismo , Comprimidos , Transcriptoma/efectos de los fármacos , Hipoglucemiantes/farmacología , Perfilación de la Expresión Génica , Lípidos/sangre
13.
Poult Sci ; 103(10): 104068, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096825

RESUMEN

Avian influenza virus (AIV) subtype H9N2 has significantly threatened the poultry business in recent years by having become the predominant subtype in flocks of chickens, ducks, and pigeons. In addition, the public health aspects of H9N2 AIV pose a significant threat to humans. Early and rapid diagnosis of H9N2 AIV is therefore of great importance. In this study, a new method for the detection of H9N2 AIV based on fluorescence intensity was successfully established using CRISPR/Cas13a technology. The Cas13a protein was first expressed in a prokaryotic system and purified using nickel ion affinity chromatography, resulting in a high-purity Cas13a protein. The best RPA (recombinase polymerase amplification) primer pairs and crRNA were designed and screened, successfully constructing the detection of H9N2 AIV based on CRISPR/Cas13a technology. Optimal concentration of Cas13a and crRNA was determined to optimize the constructed assay. The sensitivity of the optimized detection system is excellent, with a minimum detection limit of 10° copies/µL and didn't react with other avian susceptible viruses, with excellent specificity. The detection method provides the basis for the field detection of the H9N2 AIV.


Asunto(s)
Sistemas CRISPR-Cas , Pollos , Edición Génica , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Gripe Aviar/diagnóstico , Animales , Edición Génica/métodos , Edición Génica/veterinaria , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico , Patos
14.
J Neurooncol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167244

RESUMEN

OBJECTIVE: The surgical treatment of optic pathway gliomas (OPG) remains controversial, with visual outcomes often unpredictable. The present study explored surgical and clinical factors influencing visual acuity (VA) after OPG treatment and developed anatomical subtypes correlated with clinical symptoms. METHODS: Children with OPG who underwent initial partial tumor resection at Beijing Tiantan Hospital from January 2011 to December 2022 were retrospectively analyzed. Multivariate logistic regression and random forest analyses were performed to identify risk factors for post-treatment VA deterioration and a decision tree model was created based on significant factors. RESULTS: A total of 140 patients were enrolled. Multivariate logistic regression analysis identified surgical approach and initial VA as independent predictors of post-treatment VA deterioration (P < 0.05). Surgical approach, initial VA, and extent of tumor resection were the most significant factors for risk assessment and were included in the decision tree model, with surgical approach as the most important "root" node. The model demonstrated good predictive performance, with area under the curve values of 0.75 and 0.66 for the training and test datasets, respectively. A simple anatomical classification was developed, which revealed clinical characteristic differences among OPG types. Meanwhile, a correlation analysis of post-treatment visual deterioration was performed for each of the three anatomical types. CONCLUSION: This study offers a predictive model for visual outcomes following initial tumor-reduction surgery in OPG patients, which may help in visual outcomes risk stratification. Additionally, the anatomical classification effectively indicates OPG growth direction, offering potential insights into clinical symptoms.

15.
Anat Sci Educ ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169464

RESUMEN

Large Language Models (LLMs) have the potential to improve education by personalizing learning. However, ChatGPT-generated content has been criticized for sometimes producing false, biased, and/or hallucinatory information. To evaluate AI's ability to return clear and accurate anatomy information, this study generated a custom interactive and intelligent chatbot (Anatbuddy) through an Open AI Application Programming Interface (API) that enables seamless AI-driven interactions within a secured cloud infrastructure. Anatbuddy was programmed through a Retrieval Augmented Generation (RAG) method to provide context-aware responses to user queries based on a predetermined knowledge base. To compare their outputs, various queries (i.e., prompts) on thoracic anatomy (n = 18) were fed into Anatbuddy and ChatGPT 3.5. A panel comprising three experienced anatomists evaluated both tools' responses for factual accuracy, relevance, completeness, coherence, and fluency on a 5-point Likert scale. These ratings were reviewed by a third party blinded to the study, who revised and finalized scores as needed. Anatbuddy's factual accuracy (mean ± SD = 4.78/5.00 ± 0.43; median = 5.00) was rated significantly higher (U = 84, p = 0.01) than ChatGPT's accuracy (4.11 ± 0.83; median = 4.00). No statistically significant differences were detected between the chatbots for the other variables. Given ChatGPT's current content knowledge limitations, we strongly recommend the anatomy profession develop a custom AI chatbot for anatomy education utilizing a carefully curated knowledge base to ensure accuracy. Further research is needed to determine students' acceptance of custom chatbots for anatomy education and their influence on learning experiences and outcomes.

16.
Cancer Res ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186675

RESUMEN

HER2-positive breast cancer is an aggressive subtype that accounts for 15-20% of all breast cancers. Recent studies have suggested that HER2-positive breast cancer is a group of heterogeneous diseases with different sensitivities to standard treatment regimens. Revealing the molecular heterogeneity of HER2-positive breast cancer could potentially enable more precise treatment strategies. Here, we performed multiomics profiling on a HER2-positive breast cancer cohort and identified four transcriptome-based subtypes. The classical HER2 (HER2-CLA) subtype comprised 28.3% of the samples and displayed high ERBB2 activation and significant benefit from anti-HER2 therapy. The immunomodulatory (HER2-IM) subtype (20%) featured an immune-activated microenvironment, potentially suitable for de-escalated treatment and immunotherapy. The luminal-like (HER2-LUM) subtype (30.6%) possessed similar molecular features of hormone receptor-positive HER2-negative breast cancer, suggesting endocrine therapy and CDK4/6 inhibitors as a potential therapeutic strategy. Lastly, the basal/mesenchymal-like (HER2-BM) subtype (21.1%), had a poor response to current anti-HER2 dual-targeted therapies and could potentially benefit from tyrosine kinase inhibitors. The molecular characteristics and clinical features of the subtypes were further explored across multiple cohorts, and the feasibility of the proposed treatment strategies was validated in patient-derived organoid and patient-derived tumor fragment models. This study elucidates the molecular heterogeneity of HER2-positive breast cancer and paves the way for a more tailored treatment.

17.
J Immunol ; 213(7): 1008-1022, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39194407

RESUMEN

The functions of the natural dsRNA sensors TLR3 (TRIF) and RIG-I (MAVS) are crucial during viral challenge and have not been accurately clarified in adaptive immune responses to rotavirus (RV) infection. In this study, we found that RV infection caused severe pathological damage to the small intestine of TLR3-/- and TRIF-/- mice. Our data found that dendritic cells from TLR3-/- and TRIF-/- mice had impaired Ag presentation to the RV and attenuated initiation of T cells upon viral infection. These attenuated functions resulted in impaired CD4+ T and CD8+ T function in mice lacking TLR3-TRIF signaling postinfection. Additionally, attenuated proliferative capacity of T cells from TLR3-/- and TRIF-/- mice was observed. Subsequently, we observed a significant reduction in the absolute number of memory T cells in the spleen and mesenteric lymph node (MLN) of TRIF-/- recipient mice following RV infection in a bone marrow chimeric model. Furthermore, there was reduced migration of type 2 classical dendritic cells from the intestine to MLNs after RV infection in TLR3-/- and TRIF-/- mice. Notably, RV infection resulted in attenuated killing of spleen and MLN tissues in TRIF-/- and MAVS-/- mice. Finally, we demonstrated that RV infection promoted apoptosis of CD8+ T cells in TRIF-/- and TLR3-/-MAVS-/- mice. Taken together, our findings highlight an important mechanism of TLR3 signaling through TRIF in mucosal T cell responses to RV and lay the foundation for the development of a novel vaccine.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular , Células Dendríticas , Ratones Noqueados , Infecciones por Rotavirus , Rotavirus , Transducción de Señal , Receptor Toll-Like 3 , Animales , Receptor Toll-Like 3/inmunología , Ratones , Infecciones por Rotavirus/inmunología , Transducción de Señal/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Rotavirus/inmunología , Células Dendríticas/inmunología , Ratones Endogámicos C57BL , Mucosa Intestinal/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunidad Mucosa , Presentación de Antígeno/inmunología
18.
ACS Appl Mater Interfaces ; 16(35): 45830-45860, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39178336

RESUMEN

Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.

19.
Neurochem Int ; 179: 105840, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181245

RESUMEN

Our previous study has verified that activation of group Ⅰ metabotropic glutamate receptors (mGluRⅠ) in the red nucleus (RN) facilitate the development of neuropathological pain. Here, we further discussed the functions and possible molecular mechanisms of red nucleus mGluR Ⅱ (mGluR2 and mGluR3) in the development of neuropathological pain induced by spared nerve injury (SNI). Our results showed that mGluR2 and mGluR3 both were constitutively expressed in the RN of normal rats. At 2 weeks post-SNI, the protein expression of mGluR2 rather than mGluR3 was significantly reduced in the RN contralateral to the nerve lesion. Injection of mGluR2/3 agonist LY379268 into the RN contralateral to the nerve injury at 2 weeks post-SNI significantly attenuated SNI-induced neuropathological pain, this effect was reversed by mGluR2/3 antagonist EGLU instead of selective mGluR3 antagonist ß-NAAG. Intrarubral injection of LY379268 did not alter the PWT of contralateral hindpaw in normal rats, while intrarubral injection of EGLU rather than ß-NAAG provoked a significant mechanical allodynia. Further studies indicated that the expressions of nociceptive factors TNF-α and IL-1ß in the RN were enhanced at 2 weeks post-SNI. Intrarubral injection of LY379268 at 2 weeks post-SNI significantly suppressed the overexpressions of TNF-α and IL-1ß, these effects were reversed by EGLU instead of ß-NAAG. Intrarubral injection of LY379268 did not influence the protein expressions of TNF-α and IL-1ß in normal rats, while intrarubral injection of EGLU rather than ß-NAAG significantly boosted the expressions of TNF-α and IL-1ß. These findings suggest that red nucleus mGluR2 but not mGluR3 mediates inhibitory effect in the development of SNI-induced neuropathological pain by suppressing the expressions of TNF-α and IL-1ß. mGluR Ⅱ may be potential targets for drug development and clinical treatment of neuropathological pain.


Asunto(s)
Interleucina-1beta , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico , Núcleo Rojo , Factor de Necrosis Tumoral alfa , Animales , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/biosíntesis , Masculino , Interleucina-1beta/metabolismo , Interleucina-1beta/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Ratas , Núcleo Rojo/metabolismo , Núcleo Rojo/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Aminoácidos
20.
Inorg Chem ; 63(32): 15090-15097, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39087570

RESUMEN

The conversion of CO2 into useful chemicals via photocatalysts is a promising strategy for resolving the environmental problems caused by the addition of CO2. Herein, a series of composite photocatalysts MOP@TpPa-CH3 based on MOP-NH2 and TpPa-CH3 through covalent bridging have been prepared via a facile room-temperature evaporation method and employed for photocatalytic CO2 reduction. The photocatalytic performances of MOP@TpPa-CH3 are greater than those of TpPa-CH3 and MOP-NH2, where the CO generation rate of MOP@TpPa-CH3 under 10% CO2 still reaches 119.25 µmol g-1 h-1, which is 2.18 times higher than that under pure CO2 (54.74 µmol g-1 h-1). To investigate the structural factors affecting the photocatalytic activity, MOP@TBPa-CH3 without C═O groups is synthesized, and the photoreduction performance is also evaluated. The controlling experimental results demonstrate that the excellent photoreduction CO2 performance of MOP@TpPa-CH3 in a 10% CO2 atmosphere is due to the presence of C═O groups in TpPa-CH3. This work offers a new design and construction strategy for novel MOP@COF composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA