Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Environ Sci Technol ; 57(50): 20975-20991, 2023 Dec 19.
Article En | MEDLINE | ID: mdl-37931214

Nitrate/nitrite-dependent anaerobic oxidation of methane (n-DAMO) is a recently discovered process, which provides a sustainable perspective for simultaneous nitrogen removal and greenhouse gas emission (GHG) mitigation by using methane as an electron donor for denitrification. However, the engineering roadmap of the n-DAMO process is still unclear. This work constitutes a state-of-the-art review on the classical and most recently discovered metabolic mechanisms of the n-DAMO process. The versatile combinations of the n-DAMO process with nitrification, nitritation, and partial nitritation for nitrogen removal are also clearly presented and discussed. Additionally, the recent advances in bioreactor development are systematically reviewed and evaluated comprehensively in terms of methane supply, biomass retention, membrane requirement, startup time, reactor performance, and limitations. The key issues including enrichment and operation strategy for the scaling up of n-DAMO-based processes are also critically addressed. Moreover, the challenges inherent to implementing the n-DAMO process in practical applications, including application scenario recognition, GHG emission mitigation, and operation under realistic conditions, are highlighted. Finally, prospects as well as opportunities for future research are proposed. Overall, this review provides a roadmap for potential applications and further development of the n-DAMO process in the field of wastewater treatment.


Ammonium Compounds , Nitrates , Nitrates/metabolism , Nitrites/metabolism , Nitrification , Anaerobiosis , Methane , Denitrification , Ammonium Compounds/metabolism , Oxidation-Reduction , Bioreactors , Nitrogen/metabolism
2.
Water Res ; 244: 120448, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37619305

Granular sludge combined n-DAMO and Anammox (n-D/A) is an energy-efficient biotechnique for the simultaneous removal of nitrogen and dissolved methane from wastewater. However, the lack of knowledge so far about the metabolic interactions between n-DAMO and Anammox in response to operation condition in granular sludge restrains the development of this biotechnology. To address this gap, three independent membrane granular sludge reactors (MGSRs) were designed to carry out the granule-based n-D/A process under different conditions. We provided the first deep insights into the metabolic interactions between n-DAMO and Anammox in granular sludge via combined metagenomic and metatranscriptomic analyses. Our study unveiled a clear population shift of n-DAMO community from Candidatus Methanoperedens to Candidatus Methylomirabilis from sidestream to mainstream. Candidatus Methanoperedens with relative abundance of 25.2% played the major role in nitrate reduction and methane oxidation under sidestream condition, indicated by the high expression activities of mcrA and narG. Candidatus Methylomirabilis dominated the microbial community under mainstream condition with relative abundance of 32.1%, supported by the high expression activities of pmoA and hao. Furthermore, a transition of Anammox population from Candidatus Kuenenia to Candidatus Brocadia was also observed from sidestream to mainstream. Candidatus Kuenenia and Candidatus Brocadia jointly contributed to the primary anaerobic ammonium oxidation suggested by the high expression value of hdh and hzs. Candidatus Methylomirabilis was speculated to perform ammonium oxidation mediated by pMMO under mainstream condition. These findings might help to reveal the microbial interactions and ecological niches of n-DAMO and Anammox microorganisms, shedding light on the optimization and management of the granule-based n-D/A system.


Ammonium Compounds , Sewage , Anaerobiosis , Anaerobic Ammonia Oxidation , Bioreactors , Denitrification , Bacteria/genetics , Bacteria/metabolism , Oxidation-Reduction , Methane/metabolism , Ammonium Compounds/metabolism , Nitrogen/metabolism
...