Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Biosens Bioelectron ; 267: 116781, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39293268

RESUMEN

In-vitro blood purification is essential to a wide range of medical treatments, requiring fine-grained analysis and precise separation of blood components. Despite existing methods that can extract specific components from blood by size or by magnetism, there is not yet a general approach to efficiently filter blood components on demand. In this work, we introduce the first programmable non-contact blood purification system for accurate blood component detection and extraction. To accurately identify different cells and artificial particles in the blood, we collected and annotated a new blood component object detection dataset and trained a collection of deep-learning-based object detectors upon it. To precisely capture and extract desired blood components, we fabricated a microfluidic chip and set up a customized holographic optical tweezer to trap and move cells/particles in the blood. Empirically, we demonstrate that our proposed system can perform real-time blood fractionation with high precision reaching up to 96.89%, as well as high efficiency. Its scalability and flexibility open new research directions in blood treatment.

2.
Adv Sci (Weinh) ; : e2404645, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119899

RESUMEN

The lymph node is the most common site of distant metastasis of cervical squamous cell carcinoma (CSCC), which elicits dismal prognosis and limited efficiency for treatment. Elucidation of the mechanisms underlying CSCC lymphatic metastasis would provide potential therapeutic strategies for nodal metastatic of CSCC. Here, based on in vivo lymphatic metastasis screening model, a circular RNA is identified that is termed as lymph node metastasis associated circRNA (LNMAC), is markedly upregulated in lymphatic metastatic CSCC and correlated with lymph node metastasis. Overexpression of LNMAC dramatically augments the metastatic capability of CSCC cells to the lymph node via inducing lymphangiogenesis. Mechanistically, LNMAC epigenetically upregulates fibroblast growth factor 2 (FGF2) expression by directly associating with histone acacetylase 1 (HDAC1), preventing Importin α6/8-mediated nuclear translocation of HDAC1 and eliciting histone H3K27ac-induced FGF2 transcriptional activation. Treatment with 3F12E7, an anti-FGF2 monoclonal antibody, effectively inhibits LNMAC-induced CSCC lymphatic metastasis. Taken together, these findings indicate that LNMAC plays a crucial role in FGF2-mediated lymphangiogenesis and lymphatic metastasis, highlighting that LNMAC might be a therapeutic target for lymph node metastasis in CSCC patients.

3.
Polymers (Basel) ; 16(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39204604

RESUMEN

This study introduces the synthesis and detailed characterization of a novel thermochromic material capable of reversible alterations in its thermotropic transmittance. Through an emulsion polymerization process, this newly developed material is composed of 75-85% octadecyl acrylate and 0-7% allyl methacrylate, demonstrating a pronounced discoloration effect across a narrow yet critical temperature range of 24.5-39 °C. The synthesized powder underwent a battery of tests, including differential scanning calorimetry and thermogravimetric analysis, as well as scanning electron microscopy. These comprehensive evaluations confirmed the material's exceptional thermal stability, uniform particle size distribution, and strong anchoring properties. Building upon these findings, we advanced the development of thermochromic polyvinyl butyral films and laminated glass products. By utilizing a coextrusion technique, we integrated these films into laminated glass, setting a new benchmark against existing glass technologies. Remarkably, the incorporation of thermochromic PVB films into laminated glass led to a significant reduction in solar irradiance of 20-30%, outperforming traditional double silver low-emissivity glass. This achievement demonstrates the exceptional shading and thermal insulation properties of the material. The research presented herein not only pioneers a valuable methodology for the engineering of smart materials with tunable thermotropic transmittance but also holds the key to unlocking enhanced energy efficiency across a spectrum of applications. The potential impact of this innovation on the realm of sustainable building materials is profound, promising significant strides toward energy conservation and environmental stewardship.

4.
Genomics ; 116(5): 110931, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39209049

RESUMEN

The clinical benefit of anti-programmed cell death protein 1 (PD-1)-based immunotherapy among patients with microsatellite instable (MSI) endometrial cancer (EC) precedes that of microsatellite stable (MSS) EC, the mechanisms of which have not been fully understood. Circular RNAs (circRNAs) were reported to modulate immune evasion in several types of malignancies, while their roles in the immune regulation in EC remain largely unknown. Here, we conducted circRNA array analysis and mRNA-Sequencing of 10 MSI EC samples and 10 MSS EC samples and identified 1083 differentially expressed circRNAs (DE-circRNAs) and 864 differentially expressed mRNAs, based on which we constructed a circRNA-miRNA-mRNA comprehensive network consisting of 35 DE-circRNAs, 56 predicted miRNAs and 24 differentially expressed mRNAs. Finally, we confirmed hsa_circ_0058230 being positively correlated with CD8+ T cells infiltration, suggesting that it might take a part in anti-tumor immunity in EC.

5.
Materials (Basel) ; 17(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39203225

RESUMEN

With the increasing global focus on energy efficiency and environmental sustainability, intelligent building materials such as thermochromic glazing have emerged as a hot topic of research. The intent of this paper is to explore the utilization of gel-type thermochromic glazing within the realm of architectural energy conservation calculations. It conducts an exhaustive examination of the material's attributes, its capacity for energy savings, and the obstacles encountered in real-world applications. Through simulation studies and case analyses, this paper assesses the energy efficiency of gel-type thermochromic glazing across various climates and suggests strategies for optimization. The study revealed that the incorporation of gel-based thermochromic glazing leads to a marked reduction in energy usage within buildings, an improvement in indoor comfort levels, and significant environmental advantages.

6.
Micromachines (Basel) ; 15(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39203595

RESUMEN

The combination of multiplex polymerase chain reaction (mPCR) and microfluidic technologies demonstrates great significance in biomedical applications. However, current microfluidics-based molecular diagnostics face challenges in multi-target detection due to their limited fluorescence channels, complicated fabrication process, and high cost. In this research, we proposed a cost-effective sandblasting method for manufacturing silicon microchips and a chip-based microdevice for field mPCR detection. The atomic force microscopy (AFM) images showed a rough surface of the sandblasted microchips, leading to poor biocompatibility. To relieve the inhibitory effect, we dip-coated a layer of bovine serum albumin (BSA) on the irregular substrate. The optimized coating condition was determined by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) (65 °C for 60 min). After sufficient coating, we performed on-chip PCR tests with 500 copies/mL Coronavirus Disease 2019 (COVID-19) standard sample within 20 min, and the sandblasted microchip displayed a higher amplification rate compared to dry etching chips. Finally, we achieved a 50 min mPCR for screening five resistance genes of the endophthalmitis pathogens on our microdevices, with strong specificity and reliability. Thus, this sandblasted microchip-based platform not only provides a rapid, accessible, and effective solution for multiplex molecular detection but also enables large-scale microfabrication in a low-cost and convenient way.

7.
Sci Total Environ ; 947: 174641, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986714

RESUMEN

The in-situ high-frequency monitoring of total nitrogen (TN) and total phosphorus (TP) in rivers is a challenge and key to instant water quality judgment and early warning. Based on the physical and chemical association between TN/TP and sensor-measurable predictors, we proposed a novel "indirect" measurement method for TN and TP in rivers. This method combines the timeliness of multi-sensor and the accuracy of intelligent algorithms, utilizing 188,629 data sets from 131 water monitoring stations across China. Under 5 algorithms and 4 predictor group scenarios, the results showed that: (1) extra tree regression (ETR) with 6 predictors exhibited the best precision, and the mean determination coefficient (R2) of TN and TP inversion across 131 stations reached 0.78 ± 0.25 and 0.79 ± 0.22 respectively; (2) among 6 potential predictors, the importance degrees of temperature, electrical conductivity, NH4-N, and turbidity were greater than that of pH and DO, and >80 % of stations exhibited acceptable prediction accuracy (R2 > 0.6) when the number of predictors (P) ranged from 4 to 6, which showed good tolerability to predictor variations; (3) the accurate classification rates of water quality standard (ACRws) of all stations based on TN and TP reached 90.41 ± 6.96 % and 92.33 ± 6.41 %; (4) in 9 regions/basins of China, this method showed universal application potential with no significant prediction difference. Compared with laboratory test, water quality automatic monitoring station, and remote sensing inversion, the proposed method offers high-frequency, high-precision, regional adaptability, low cost, and stable operation under rainy, cloudy, and nighttime conditions. The new method may provide important technological support for timely pollutant tracing, pre-warning, and emergency control for river pollution.

8.
J Colloid Interface Sci ; 675: 1052-1058, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39013301

RESUMEN

By incorporating polar fibers into the design of electrorheological (ER) fluids, a 130% performance improvement can be achieved with the addition of only 0.8 vol% of polar long fibers. We quantitatively analyzed the impact of relatively long fibers on improving ER performance by measuring the yield stress, shear stress, and current density after adding fibers. Both optical microscopy and transmission electron microscopy were used to observe and analyze the interaction between ER particles and polar fibers. The results indicate that, under the influence of an electric field, the fibers transform the one-dimensional chain-like structure into a two-dimensional mesh structure, greatly improving the ER performance. The transformation of structure induced by the polar fibers in the ER fluids amplifies the ER effect. However, the inclusion of non-polar fibers does not contribute to this enhancement, as a point of comparison. Moreover, to ensure the universality of this method, we used two different types of ER fluids in experiments. The utilization of this method offers a straightforward, environmentally friendly, and highly effective approach. Furthermore, this study provides a novel technical solution aimed at enhancing the performance of ER fluids.

9.
ACS Biomater Sci Eng ; 10(6): 4085-4092, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38780535

RESUMEN

With the utilization of advanced microfluidic techniques, the microfluidic particle counter demonstrates significant potential due to its high efficiency, precise manipulation, and portability. This work focuses on a photodetection counter based on optical absorption. To achieve precise particle detection, a Christmas tree-like structure was implemented to separate a single particle from a cluster, which was then detected in independent multiple parallel channels. The system exhibits a high degree of reliability, as evidenced by a linear correlation coefficient over 0.99 obtained during testing with gradient-concentrated beads. Furthermore, when the calculated density of NIH 3T3 cells is compared with that of a traditional flow cytometer, the system achieves a substantial agreement percentage ranging from 87.5 to 99.9%. The system's ability to perform high-throughput analysis with a high acquisition rate positions it as a promising tool for real-time point-of-care testing.


Asunto(s)
Técnicas Analíticas Microfluídicas , Ratones , Animales , Células 3T3 NIH , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Citometría de Flujo/métodos , Citometría de Flujo/instrumentación , Microfluídica/métodos , Reproducibilidad de los Resultados
10.
Soft Matter ; 20(16): 3436-3447, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38564251

RESUMEN

Flexible actuation materials play a crucial role in biomimetic robots. Seeking methods to enhance actuation and functionality is one of the directions in which actuators strive to meet the high-performance and diverse requirements of environmental conditions. Herein, by utilizing the method of adsorbing N-doped carbon dots (NCDs) onto SiO2 to form clusters of functional particles, a NCDs@SiO2/PDMS elastomer was prepared and its combined optical and electrical co-stimulation properties were effectively harnessed to develop a biomimetic crawling robot resembling Rhagophthalmus (firefly). The introduction of NCDs@SiO2 cluster particles not only effectively improves the mechanical and dielectric properties of the elastomer but also exhibits fluorescence response and actuation response under the co-stimulation of UV and electricity, respectively. Additionally, a hybrid dielectric elastomer actuator (DEA) with a transparent SWCNT mesh electrode exhibits two notable advancements: an 826% increase in out-of-plane displacement under low electric field stimulation compared to the pure matrix and the ability of NCDs to maintain a stable excited state within the polymer for an extended duration under UV-excitation. Simultaneously, the transparent biomimetic crawling robot can stealthily move in specific environments and fluoresce under UV light.

11.
Nanomaterials (Basel) ; 14(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38668146

RESUMEN

Dean flow and Dean instability play an important role in inertial microfluidics, with a wide application in mixing and sorting. However, most studies are limited to Dean flow in the microscale. This work first reports the application of Dean instability on organic nanoparticles synthesis at De up to 198. The channel geometry (the tortuous channel) is optimized by simulation, in which the mixing efficiency is considered. With the optimized design, prednisolone nanoparticles are synthesized, and the size of the most abundant prednisolone nanoparticles is down to 100 nm with an increase in the Re and De and smallest size down to 46 nm. This work serves as an ice-breaker to the real application of Dean instability by demonstrating its ability in mixing and nanomaterials like nanoparticle synthesis.

12.
Bioengineering (Basel) ; 11(4)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38671780

RESUMEN

In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.

13.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38676200

RESUMEN

In diverse realms of research, such as holographic optical tweezer mechanical measurements, colloidal particle motion state examinations, cell tracking, and drug delivery, the localization and analysis of particle motion command paramount significance. Algorithms ranging from conventional numerical methods to advanced deep-learning networks mark substantial strides in the sphere of particle orientation analysis. However, the need for datasets has hindered the application of deep learning in particle tracking. In this work, we elucidated an efficacious methodology pivoted toward generating synthetic datasets conducive to this domain that resonates with robustness and precision when applied to real-world data of tracking 3D particles. We developed a 3D real-time particle positioning network based on the CenterNet network. After conducting experiments, our network has achieved a horizontal positioning error of 0.0478 µm and a z-axis positioning error of 0.1990 µm. It shows the capability to handle real-time tracking of particles, diverse in dimensions, near the focal plane with high precision. In addition, we have rendered all datasets cultivated during this investigation accessible.

14.
Adv Sci (Weinh) ; 11(21): e2308422, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520724

RESUMEN

Accumulating evidence indicates that metabolic reprogramming of cancer cells supports the energy and metabolic demands during tumor metastasis. However, the metabolic alterations underlying lymph node metastasis (LNM) of cervical cancer (CCa) have not been well recognized. In the present study, it is found that lymphatic metastatic CCa cells have reduced dependency on glucose and glycolysis but increased fatty acid oxidation (FAO). Inhibition of carnitine palmitoyl transferase 1A (CPT1A) significantly compromises palmitate-induced cell stemness. Mechanistically, FAO-derived acetyl-CoA enhances H3K27 acetylation (H3K27Ac) modification level in the promoter of stemness genes, increasing stemness and nodal metastasis in the lipid-rich nodal environment. Genetic and pharmacological loss of CPT1A function markedly suppresses the metastatic colonization of CCa cells in tumor-draining lymph nodes. Together, these findings propose an effective method of cancer therapy by targeting FAO in patients with CCa and lymph node metastasis.


Asunto(s)
Acetilcoenzima A , Ácidos Grasos , Metástasis Linfática , Oxidación-Reducción , Neoplasias del Cuello Uterino , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Femenino , Humanos , Ácidos Grasos/metabolismo , Acetilcoenzima A/metabolismo , Ratones , Línea Celular Tumoral , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Modelos Animales de Enfermedad , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología
15.
Cell Mol Biol Lett ; 29(1): 25, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331765

RESUMEN

BACKGROUND: Cervical cancer (CCa) is the fourth most common cancer among females, with high incidence and mortality rates. Circular RNAs (circRNAs) are key regulators of various biological processes in cancer. However, the biological role of circRNAs in cervical cancer (CCa) remains largely unknown. This study aimed to elucidate the role of circMAST1 in CCa. METHODS: CircRNAs related to CCa progression were identified via a circRNA microarray. The relationship between circMAST1 levels and clinicopathological features of CCa was evaluated using the clinical specimens and data of 131 patients with CCa. In vivo and in vitro experiments, including xenograft animal models, cell proliferation assay, transwell assay, RNA pull-down assay, whole-transcriptome sequencing, RIP assay, and RNA-FISH, were performed to investigate the effects of circMAST1 on the malignant behavior of CCa. RESULTS: CircMAST1 was significantly downregulated in CCa tissues, and low expression of CircMAST1 was correlated with a poor prognosis. Moreover, our results demonstrated that circMAST1 inhibited tumor growth and lymph node metastasis of CCa. Mechanistically, circMAST1 competitively sequestered N-acetyltransferase 10 (NAT10) and hindered Yes-associated protein (YAP) mRNA ac4C modification to promote its degradation and inhibit tumor progression in CCa. CONCLUSIONS: CircMAST1 plays a major suppressive role in the tumor growth and metastasis of CCa. In particular, circMAST1 can serve as a potential biomarker and novel target for CCa.


Asunto(s)
Citidina , ARN Circular , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Línea Celular Tumoral , Citidina/análogos & derivados , ARN/genética , ARN Circular/genética , ARN Mensajero/metabolismo , Neoplasias del Cuello Uterino/genética
16.
Materials (Basel) ; 17(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276450

RESUMEN

Low-temperature co-fired ceramic (LTCC) substrate materials are widely applied in electronic components due to their excellent microwave dielectric properties. However, the absence of LTCC materials with a lower dielectric constant and higher mechanical strength restricts the creation of integrated and minified electronic devices. In this work, sol-gel-derived CaO-B2O3-SiO2 (CBS) glass/Al2O3 composites with high flexural strength and low dielectric constant were successfully prepared using the LTCC technique. Among the composites sintered at different temperatures, the composites sintered at 870 °C for 2 hours possess a dielectric constant of 6.3 (10 GHz), a dielectric loss of 0.2%, a flexural strength of 245 MPa, and a CTE of 5.3 × 10-6 K-1, demonstrating its great potential for applications in the electronic package field. By analyzing the CBS glass' physical characteristics, it was found that the sol-gel-derived glass has an extremely low dielectric constant of 3.6 and does not crystallize or react with Al2O3 at the sintering temperature, which is conducive to improving the flexural strength and reducing the dielectric constant of CBS glass/Al2O3 composites.

17.
Sci Rep ; 13(1): 17896, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857780

RESUMEN

Dean's flow and Dean's instability have always been important concepts in the inertial microfluidics. Curved channels are widely used for applications like mixing and sorting but are limited to Dean's flow only. This work first reports the Dean's instability flow in high aspect ratio channels on the deka-microns level for [Formula: see text]. A new channel geometry (the tortuous channel), which creates a rolled-up velocity profile, is presented and studied experimentally and numerically along with other three typical channel geometries at Dean's flow condition and Dean's instability condition. The tortuous channel generates a higher De environment at the same Re compared to the other channels and allows easier Dean's instability creation. We further demonstrate the use of multiple vortexes for mixing. The mixing efficiency is considered among different channel patterns and the tortuous channel outperforms the others. This work offers more understanding of the creation of Dean's instability at high aspect ratio channels and the effect of channel geometry on it. Ultimately, it demonstrates the potential for applications like mixing and cell sorting.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37883251

RESUMEN

With the help of neural network-based representation learning, significant progress has been recently made in data-driven online dynamic stability assessment (DSA) of complex electric power systems. However, without sufficient attention to diverse data loss conditions in practice, the existing data-driven DSA solutions' performance could be largely degraded due to practical defective input data. To address this problem, this work develops a robust representation learning approach to enhance DSA performance against multiple input data loss conditions in practice. Specifically, focusing on the short-term voltage stability (SVS) issue, an ensemble representation learning scheme (ERLS) is carefully designed to achieve data loss-tolerant online SVS assessment: 1) based on an efficient data masking technique, various missing data conditions are handled and augmented in a unified manner for lossy learning dataset preparation; 2) the emerging spatial-temporal graph convolutional network (STGCN) is leveraged to derive multiple diversified base learners with strong capability in SVS feature learning and representation; and 3) with massive SVS scenarios deeply grouped into a number of clusters, these STGCN-enabled base learners are distinctly assembled for each cluster via multilinear regression (MLR) to realize ensemble SVS assessment. Such a divide-and-conquer ensemble strategy results in highly robust SVS assessment performance when faced with various severe data loss conditions. Numerical tests on the benchmark Nordic test system illustrate the efficacy of the proposed approach.

19.
J Funct Biomater ; 14(4)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37103298

RESUMEN

Polydimethylsiloxane (PDMS) has been widely used to make lab-on-a-chip devices, such as reactors and sensors, for biological research. Real-time nucleic acid testing is one of the main applications of PDMS microfluidic chips due to their high biocompatibility and transparency. However, the inherent hydrophobicity and excessive gas permeability of PDMS hinder its applications in many fields. This study developed a silicon-based polydimethylsiloxane-polyethylene-glycol (PDMS-PEG) copolymer microfluidic chip, the PDMS-PEG copolymer silicon chip (PPc-Si chip), for biomolecular diagnosis. By adjusting the modifier formula for PDMS, the hydrophilic switch occurred within 15 s after contact with water, resulting in only a 0.8% reduction in transmittance after modification. In addition, we evaluated the transmittance at a wide range of wavelengths from 200 nm to 1000 nm to provide a reference for its optical property study and application in optical-related devices. The improved hydrophilicity was achieved by introducing a large number of hydroxyl groups, which also resulted in excellent bonding strength of PPc-Si chips. The bonding condition was easy to achieve and time-saving. Real-time PCR tests were successfully conducted with higher efficiency and lower non-specific absorption. This chip has a high potential for a wide range of applications in point-of-care tests (POCT) and rapid disease diagnosis.

20.
Molecules ; 28(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770751

RESUMEN

Real-time polymerase chain reaction (real-time PCR) tests were successfully conducted in an aluminum-based microfluidic chip developed in this work. The reaction chamber was coated with silicone-modified epoxy resin to isolate the reaction system from metal surfaces, preventing the metal ions from interfering with the reaction process. The patterned aluminum substrate was bonded with a hydroxylated glass mask using silicone sealant at room temperature. The effect of thermal expansion was counteracted by the elasticity of cured silicone. With the heating process closely monitored, real-time PCR testing in reaction chambers proceeded smoothly, and the results show similar quantification cycle values to those of traditional test sets. Scanning electron microscope (SEM) and atomic force microscopy (AFM) images showed that the surface of the reaction chamber was smoothly coated, illustrating the promising coating and isolating properties. Energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-optical emission spectrometer (ICP-OES) showed that no metal ions escaped from the metal to the chip surface. Fourier-transform infrared spectroscopy (FTIR) was used to check the surface chemical state before and after tests, and the unchanged infrared absorption peaks indicated the unreacted, antifouling surface. The limit of detection (LOD) of at least two copies can be obtained in this chip.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA