Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(2): e1011976, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38315728

RESUMEN

Viral infections trigger the expression of interferons (IFNs) and interferon stimulated genes (ISGs), which are crucial to modulate an antiviral response. The human guanylate binding protein 1 (GBP1) is an ISG and exhibits antiviral activity against several viruses. In a previous study, GBP1 was described to impair replication of the hepatitis C virus (HCV). However, the impact of GBP1 on the HCV life cycle is still enigmatic. To monitor the expression and subcellular distribution of GBP1 and HCV we performed qPCR, Western blot, CLSM and STED microscopy, virus titration and reporter gene assays. In contrast to previous reports, we observed that HCV induces the expression of GBP1. Further, to induce GBP1 expression, the cells were stimulated with IFNγ. GBP1 modulation was achieved either by overexpression of GBP1-Wt or by siRNA-mediated knockdown. Silencing of GBP1 impaired the release of viral particles and resulted in intracellular HCV core accumulation, while overexpression of GBP1 favored viral replication and release. CLSM and STED analyses revealed a vesicular distribution of GBP1 in the perinuclear region. Here, it colocalizes with HCV core around lipid droplets, where it acts as assembly platform and thereby favors HCV morphogenesis and release. Collectively, our results identify an unprecedented function of GBP1 as a pro-viral factor. As such, it is essential for viral assembly and release acting through tethering factors involved in HCV morphogenesis onto the surface of lipid droplets.


Asunto(s)
Proteínas de Unión al GTP , Hepacivirus , Hepatitis C , Humanos , Hepacivirus/fisiología , Hepatitis C/genética , Interferones , Replicación Viral , Proteínas de Unión al GTP/genética
2.
Front Microbiol ; 14: 1146672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266005

RESUMEN

Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) have been increasing at an alarming rate worldwide. Many clinical studies have underlined the link between NAFLD and atherosclerosis. Our previous experiments have discovered that Lactobacillus (L.) plantarum ATCC14917 supplementation could decrease the progression of atherosclerotic lesion formation. In this study, we aimed to investigate the role of supplementation of L. plantarum ATCC14917 mitigates liver injury in rats fed with a high-fat diet (HFD, 45% kcal from fat). A total of 32 rats were randomly divided into four groups, including two intervention groups, who fed with HFD and administering either 1 × 107 or 1 × 109 colony forming units (CFU) of L. plantarum ATCC14917, the normal control group, and the HFD control group. The results showed that supplementation with low-dose and high-dose of L. plantarum ATCC14917 for 8 weeks could alleviate the body weight gain (p < 0.05), hepatic steatosis, and serum lipid metabolism (p < 0.05) in HFD-fed rats. Moreover, supplementation of L. plantarum ATCC 14917 decreased total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels (p < 0.05) in serum, and improved HFD-associated inflammation (p < 0.05). Furthermore, cecal contents were analyzed by high-throughput 16S ribosomal RNA sequencing. The results indicated that supplementation of L. plantarum ATCC 14917 could ameliorate HFD-induced gut dysbiosis. In summary, our findings suggest that supplementation of L. plantarum ATCC 14917 could mitigate NAFLD in rats, suggesting it may be considered as a probiotic agent for preventing HFD-induced obesity.

3.
J Vis Exp ; (193)2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-37010310

RESUMEN

As a traditional Chinese medicine (TCM), Epimedii folium (EF) has a history in medicine and food that is > 2,000 years old. Clinically, EF processed with mutton oil is often used as a medicine. In recent years, reports of safety risks and adverse reactions of products that use EF as a raw material have gradually increased. Processing can effectively improve the safety of TCM. According to TCM theory, mutton-oil processing can reduce the toxicity of EF and enhance its tonifying effect on the kidneys. However, there is a lack of systematic research and evaluation of EF mutton-oil processing technology. In this study, we used the Box-Behnken experimental design-response surface methodology to optimize the key parameters of the processing technology by assessing the contents of multiple components. The results showed that the optimal mutton-oil processing technology of EF was as follows: heating the mutton oil at 120 °C ± 10 °C, adding the crude EF, stir-frying it gently to 189 °C ± 10 °C until it is evenly shiny, and then removing it and cool. For every 100 kg of EF, 15 kg of mutton oil should be used. The toxicities and teratogenicities of an aqueous extract of crude and mutton-oil processed EF were compared in a zebrafish embryo developmental model. The results showed that the crude herb group was more likely to cause zebrafish deformities, and its half-maximal lethal EF concentration was lower. In conclusion, the optimized mutton-oil processing technology was stable and reliable, with good repeatability. At a certain dose, the aqueous extract of EF was toxic to the development of zebrafish embryos, and the toxicity was stronger for the crude drug than for the processed drug. The results showed that mutton-oil processing reduced the toxicity of crude EF. These findings can be used to improve the quality, uniformity, and clinical safety of mutton oil-processed EF.


Asunto(s)
Medicamentos Herbarios Chinos , Pez Cebra , Animales , Medicina Tradicional China , Tecnología
4.
J Sci Food Agric ; 103(7): 3390-3401, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36754603

RESUMEN

BACKGROUND: Cyclophosphamide (CTX) is a widely used chemotherapeutic agent for the treatment of malignant tumors and autoimmune diseases. However, it can cause immunosuppression and damage the intestinal mucosa. The development of new agents to counteract these side effects is becoming increasingly important. Previous studies have shown that the polysaccharides from Gastrodia elata (GEPs) have strong immune-enhancing effects; however, their functions regarding the intestines and the underlying mechanism are still unclear. In this study, the effects of GEPs on immunomodulatory activity, intestinal barrier function, and gut microbiota regulation were investigated in a mouse model of CTX-induced immunosuppression. RESULTS: Gastrodia elata polysaccharides attenuated the CTX-induced decrease in organ indices of the thymus and spleen, and promoted the secretion of immune-related cytokines and immunoglobulins in the serum. They also improved the intestinal pathology and restored the intestinal barrier function by elevating the expression of intestinal tight junction proteins, occludin and ZO-1. Moreover, GEPs restored the composition and abundance of the gut microbiota and increased the short-chain fatty acid (SCFA) content in the colon. The abundance of SCFA-producing bacteria (Muribaculaceae, Prevotellaceae, and Bacteroidaceae) also increased. CONCLUSIONS: Gastrodia elata polysaccharides can effectively alleviate immunosuppression and regulate the intestinal barrier integrity and the structure of gut microbiota in CTX-treated mice. They may be used as ingredients to develop functional foods for intestinal health. © 2023 Society of Chemical Industry.


Asunto(s)
Gastrodia , Microbioma Gastrointestinal , Ratones , Animales , Gastrodia/química , Ciclofosfamida/efectos adversos , Intestinos , Polisacáridos/farmacología , Polisacáridos/química
5.
J Vis Exp ; (190)2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36533835

RESUMEN

The occurrence of non-alcoholic fatty liver disease (NAFLD) has been increasing at an alarming rate worldwide. Platycodon grandiflorum is widely used as a traditional ethnomedicine for the treatment of various diseases and is a typical functional food that can be incorporated into the everyday diet. Studies have suggested that platycodin D (PD), one of the main active ingredients in Platycodon grandiflorum, has high bioavailability and significantly mitigates the progress of NAFLD, but the underlying mechanism of this is still unclear. This study aims to investigate the therapeutic effect of PD against NAFLD in vitro. AML-12 cells were pretreated with 300 µM palmitic acid (PA) for 24 h to model NAFLD in vitro. Then, the cells were either treated with PD or received no PD treatment for 24 h. The levels of reactive oxygen species (ROS) were analyzed using 2',7'-dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining, and the mitochondrial membrane potential was determined by the JC-1 staining method. Moreover, the protein expression levels of LC3-II/LC3-I and p62/SQSTM1 in the cell lysates were analyzed by western blotting. PD was found to significantly decrease the ROS and mitochondrial membrane potential levels in the PA-treated group compared to the control group. Meanwhile, PD increased the LC3-II/LC3-I levels and decreased the p62/SQSTM1 levels in the PA-treated group compared to the control group. The results indicated that PD ameliorated NAFLD in vitro by reducing oxidative stress and stimulating autophagy. This in vitro model is a useful tool for studying the role of PD in NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Platycodon , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Palmítico/farmacología , Ácido Palmítico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1/metabolismo , Platycodon/metabolismo , Hígado/metabolismo
6.
Front Microbiol ; 12: 631523, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679658

RESUMEN

The envelope glycoprotein M (gM), a surface virion component conserved among alphaherpesviruses, is a multiple-transmembrane domain-containing glycoprotein with a complex N-linked oligosaccharide. The gM mediates a diverse range of functions during the viral life cycle. In this review, we summarize the biological features of gM, including its characterization and function in some specicial alphaherpesviruses. gM modulates the virus-induced membrane fusion during virus invasion, transports other proteins to the appropriate intracellular membranes for primary and secondary envelopment during virion assembly, and promotes egress of the virus. The gM can interact with various viral and cellular components, and the focus of recent research has also been on interactions related to gM. And we will discuss how gM participates in the life cycle of alphaherpesviruses.

7.
Sci Rep ; 11(1): 616, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436670

RESUMEN

Riemerella anatipestifer is a major pathogenic microorganism in poultry causing serositis with significant mortality. Serotype 1 and 2 were most pathogenic, prevalent, and liable over the world. In this study, the intracellular metabolites in R. anatipestifer strains RA-CH-1 (serotype 1) and RA-CH-2 (serotype 2) were identified by gas chromatography-mass spectrometer (GC-MS). The metabolic profiles were performed using hierarchical clustering and partial least squares discriminant analysis (PLS-DA). The results of hierarchical cluster analysis showed that the amounts of the detected metabolites were more abundant in RA-CH-2. RA-CH-1 and RA-CH-2 were separated by the PLS-DA model. 24 potential biomarkers participated in nine metabolisms were contributed predominantly to the separation. Based on the complete genome sequence database and metabolite data, the first large-scale metabolic models of iJL463 (RA-CH-1) and iDZ470 (RA-CH-2) were reconstructed. In addition, we explained the change of purine metabolism combined with the transcriptome and metabolomics data. The study showed that it is possible to detect and differentiate between these two organisms based on their intracellular metabolites using GC-MS. The present research fills a gap in the metabolomics characteristics of R. anatipestifer.


Asunto(s)
Infecciones por Flavobacteriaceae/metabolismo , Genómica/métodos , Metaboloma , Enfermedades de las Aves de Corral/microbiología , Riemerella/metabolismo , Factores de Virulencia/metabolismo , Animales , Infecciones por Flavobacteriaceae/genética , Infecciones por Flavobacteriaceae/microbiología , Riemerella/genética , Riemerella/aislamiento & purificación , Factores de Virulencia/genética
8.
Poult Sci ; 100(1): 26-38, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33357689

RESUMEN

Duck enteritis virus (DEV) multifunctional tegument protein UL13 is predicted to be a conserved herpesvirus protein kinase; however, little is known about its subcellular localization signal. In this study, through transfection of 2 predicted nuclear signals of DEV UL13 fused to enhanced green fluorescent protein, 2 bipartite nuclear localization signals (NLS) were identified. We found that ivermectin blocked the NLS-mediated nuclear import of DEV UL13, showing that the nuclear localization signal of DEV UL13 is a classical importin α- and ß-dependent process. We constructed a DEV UL13 mutant strain in which the NLS of DEV UL13 was deleted to explore whether deletion of the NLS affects viral replication. Amino acids 4 to 7 and 90 to 96 were predicted to be NLSs, further proving that nuclear import occurs via a classical importin α- and ß-dependent process. We also found that the NLS of pUL13 had no effect on DEV replication in cell culture. Our study enhances the understanding of DEV pUL13. Taken together, these results provide significant information regarding the biological function of pUL13 during DEV infection.


Asunto(s)
Enteritis , Mardivirus , Señales de Localización Nuclear , Proteínas Quinasas , Animales , Antiparasitarios/farmacología , Células Cultivadas , Patos , Enteritis/fisiopatología , Enteritis/veterinaria , Enteritis/virología , Espacio Intracelular/metabolismo , Espacio Intracelular/virología , Ivermectina/farmacología , Mardivirus/genética , Mardivirus/metabolismo , Mutación , Señales de Localización Nuclear/efectos de los fármacos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética
9.
Poult Sci ; 99(12): 6647-6652, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33248580

RESUMEN

To determine the role of glycoprotein I (gI) in duck plague virus (DPV), a gI-deleted mutant (BAC-CHv-ΔgI) and a gI-revertant virus (BAC-CHv-ΔgI Rev) were constructed by using a markerless two-step Red recombination system implemented on the DPV genome cloned into a bacterial artificial chromosome (BAC). Mutants were characterized on duck embryo fibroblast (DEF) cells compared with wild-type virus. BAC-CHv-ΔgI produced viral plaques on DEF cells that were on average approximately 57.2% smaller than those produced by BAC-CHv-ΔgI Rev and wild-type virus. Electron microscopy confirmed that deleting of gI resulted in nucleocapsids accumulated around the cytoplasm vesicles and few of them could complete the final envelopment process. These results clearly indicated that DPV gI plays significant roles in viral cell-cell spread and viral final envelopment process.


Asunto(s)
Patos , Glicoproteínas , Mardivirus , Enfermedad de Marek , Animales , Células Cultivadas , Cromosomas Artificiales Bacterianos/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Mardivirus/genética , Mardivirus/patogenicidad , Enfermedad de Marek/transmisión , Enfermedad de Marek/virología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
10.
Front Microbiol ; 11: 1910, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013729

RESUMEN

The protein encoded by the UL48 gene of alphaherpesviruses is named VP16 or alpha-gene-transactivating factor (α-TIF). In the early stage of viral replication, VP16 is an important transactivator that can activate the transcription of viral immediate-early genes, and in the late stage of viral replication, VP16, as a tegument, is involved in viral assembly. This review will explain the mechanism of VP16 acting as α-TIF to activate the transcription of viral immediate-early genes, its role in the transition from viral latency to reactivation, and its effects on viral assembly and maturation. In addition, this review also provides new insights for further research on the life cycle of alphaherpesviruses and the role of VP16 in the viral life cycle.

11.
Front Microbiol ; 11: 1817, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973693

RESUMEN

Enteroviral replication reorganizes the cellular membrane. Upon infection, viral proteins and hijacked host factors generate unique structures called replication organelles (ROs) to replicate their viral genomes. ROs promote efficient viral genome replication, coordinate the steps of the viral replication cycle, and protect viral RNA from host immune responses. More recent researches have focused on the ultrastructure structures, formation mechanism, and functions in the virus life cycle of ROs. Dynamic model of enterovirus ROs structure is proposed, and the secretory pathway, the autophagy pathway, and lipid metabolism are found to be associated in the formation of ROs. With deeper understanding of ROs, some compounds have been found to show inhibitory effects on viral replication by targeting key proteins in the process of ROs formation. Here, we review the recent findings concerning the role, morphology, biogenesis, formation mechanism, and inhibitors of enterovirus ROs.

12.
Cells ; 9(8)2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823751

RESUMEN

The N-terminus of the hepatitis B virus (HBV) large surface protein (LHB) differs with respect to genotypes. Compared to the amino terminus of genotype (Gt)D, in GtA, GtB and GtC, an additional identical 11 amino acids (aa) are found, while GtE and GtG share another similar 10 aa. Variants of GtB and GtC affecting this N-terminal part are associated with hepatoma formation. Deletion of these amino-terminal 11 aa in GtA reduces the amount of LHBs and changes subcellular accumulation (GtA-like pattern) to a dispersed distribution (GtD-like pattern). Vice versa, the fusion of the GtA-derived N-terminal 11 aa to GtD causes a GtA-like phenotype. However, insertion of the corresponding GtE-derived 10 aa to GtD has no effect. Deletion of these 11aa decreases filament size while neither the number of released viral genomes nor virion size and infectivity are affected. A negative regulatory element (aa 2-8) and a dominant positive regulatory element (aa 9-11) affecting the amount of LHBs were identified. The fusion of this motif to eGFP revealed that the effect on protein amount and subcellular distribution is not restricted to LHBs. These data identify a novel region in the N-terminus of LHBs affecting the amount and subcellular distribution of LHBs and identify release-promoting and -inhibiting aa residues within this motive.


Asunto(s)
Genotipo , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/genética , Hepatitis B Crónica/sangre , Morfogénesis , Dominios Proteicos/genética , Precursores de Proteínas/genética , Proteínas del Envoltorio Viral/química , Virión/crecimiento & desarrollo , Adulto , Negro o Afroamericano/genética , Pueblo Asiatico/genética , Línea Celular Tumoral , ADN Viral/sangre , Femenino , Hepatitis B Crónica/etnología , Hepatitis B Crónica/virología , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Envoltorio Viral/metabolismo , Población Blanca/genética
13.
J Virol Methods ; 282: 113903, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32485472

RESUMEN

An indirect enzyme-linked immunosorbent assay (I-ELISA) based on the VP2 protein of duck hepatitis A virus type 3 (DHAV-3) was established in this study. The optimal dilutions of antigen, serum and goat anti-duck IgG conjugate were 1:1600 (2.23 µg/mL), 1:160 and 1:2000, respectively. The optimal blocking buffer was 1% skim milk. The cut-off value for the method was 0.25, and the analytical sensitivity of the method was 1:5120. The results of specific evaluation showed that except for DHAV-1, DHAV-3 antisera did not cross-react with any other common duck-sensitive pathogens, indicating that this method can be used to detect DHAV-3 and DHAV-1 antibodies. The coefficients of variation (CVs) were lower than 10 %. The coincidence rate between the VP2-DHAV-3-ELISA and the neutralization test was 93.3 %. In summary, the I-ELISA method based on VP2 protein has high sensitivity, specificity, and coincidence rate compared with the neutralization test and has advantages in serum monitoring. The I-ELISA method based on VP2 protein provides a simple and rapid method for the detection of anti-DHAV antibodies and the epidemiological monitoring of DHAV.

14.
Front Microbiol ; 10: 2032, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551969

RESUMEN

Cell death is a fundamental process in maintaining cellular homeostasis, which can be either accidental or programed. Programed cell death depends on the specific signaling pathways, resulting in either lytic or non-lytic morphology. It exists in two primary forms: apoptosis and autophagic cell death. Apoptosis is a non-lytic and selective cell death program, which is executed by caspases in response to non-self or external stimuli. In contrast, autophagy is crucial for maintaining cellular homeostasis via the degradation and recycling of cellular components. These two mechanisms also function in the defense against pathogen attack. However, picornaviruses have evolved to utilize diverse strategies and target critical components to regulate the apoptotic and autophagic processes for optimal replication and the release from the host cell. Although an increasing number of investigations have shown that the apoptosis and autophagy are altered in picornavirus infection, the mechanism by which viruses take advantage of these two processes remains unknown. In this review, we discuss the mechanisms of picornavirus executes cellular apoptosis and autophagy at the molecular level and the relationship between these interactions and viral pathogenesis.

15.
Vaccines (Basel) ; 7(3)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514454

RESUMEN

Duck hepatitis A virus (DHAV) is prevalent worldwide and has caused significant economic losses. As the predominant serotype in China, DHAV-3 has become a major challenge to the local duck industry. Here the genetics and pathogenesis of a virulent DHAV-3 strain and its embryo-passaged strain were assessed. There were only two amino acid substitutions (Y164N in VP0 protein and L71I in 2C protein) introduced during the adaptation process. The pathogenicity of these strains was further evaluated in vivo. Clinical signs, gross pathology, and histopathological analysis showed that the embryo-passaged strain was attenuated. Meanwhile, the viral RNA loads were significantly lower in the liver tissues of the ducklings infected with the attenuated strain. As expected, infection with the virulent and attenuated strains led to the activation of different innate immune genes. We suspected that the loss of replication efficiency in ducklings was responsible for the attenuation phenotype of the embryo-passaged strain. In addition, different innate immune responses in the liver of ducklings were at least partly responsible for the differential infectivity phenotype. These findings provide new insights into the genetics and pathogenesis of DHAV-3, which may aid the development of new vaccines and the implementation of immunization strategies.

16.
Future Microbiol ; 14: 1147-1157, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31368347

RESUMEN

Members of the genus Enterovirus have a significant effect on human health, especially in infants and children. Since the viral genome has limited coding capacity, Enteroviruses subvert a range of cellular processes for viral infection via the interaction of viral proteins and numerous cellular factors. Intriguingly, the capsid-receptor interaction plays a crucial role in viral entry and has significant implications in viral pathogenesis. Moreover, interactions between structural proteins and host factors occur directly or indirectly in multiple steps of viral replication. In this review, we focus on the current understanding of the multifunctionality of structural proteins in the viral life cycle, which may constitute valuable targets for antiviral and therapeutic interventions.


Asunto(s)
Enterovirus/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Proteínas Estructurales Virales/metabolismo , Internalización del Virus , Replicación Viral , Humanos
17.
Virol J ; 16(1): 54, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036013

RESUMEN

BACKGROUND: The picornaviral 3C protease mediates viral polyprotein maturation and multiple cleavages of host proteins to modulate viral translation and transcription. The 3C protease has been regarded as a valid target due to its structural similarity among different picornaviruses and minimal sequence similarity with host proteins; therefore, the development of potent inhibitors against the 3C protease as an antiviral drug is ongoing. Duck hepatitis A virus (DHAV) belongs to the Picornavidea family and is a major threat to the poultry industry. To date, little is known about the roles of the DHAV 3C protease plays during infection. METHODS: In this study, we compared the full-length DHAV 3C protein sequence with other 3C sequences to obtain an alignment for the construction of a phylogenetic tree. Then, we expressed and purified recombinant DHAV 3C protease in the BL21 expression system using nickel-NTA affinity chromatography. The optimization of the cleavage assay conditions and the kinetic analysis for DHAV 3C protease were done by in vitro cleavage assays with a fluorogenic peptide respectively. The inhibitory activity of rupintrivir against the DHAV 3C protease was further evaluated. The localization of the 3C protease in infected and transfected cells was determined using immunofluorescence and confocal microscopy. RESULTS: Under different expression conditions, the 3C protease was found to be highly expressed after induction with 1 mM IPTG at 16 °C for 10 h. We synthesized a fluorogenic peptide derived from the cleavage site of the DHAV polyprotein and evaluated the protease activity of the DHAV 3C protease for the first time. We used fluorimetric based kinetic analysis to determine kinetic parameters, and Vmax and Km values were determined to be 16.52 nmol/min and 50.78 µM, respectively. Rupintrivir was found to exhibit inhibitory activity against the DHAV 3C protease. Using polyclonal antibody and an indirect immunofluorescence microscopy assay (IFA), it was determined that the DHAV 3C protease was found in the nucleus during infection. In addition, the DHAV 3C protease can enter into the nucleus without the cooperation of viral proteins. CONCLUSIONS: This is the first study to examine the activity of the DHAV 3C protease, and the activity of the DHAV 3C protease is temperature-, pH- and NaCl concentration- dependent. The DHAV 3C protease localizes throughout DHAV-infected cells and can enter into the nucleus in the absence of other viral proteins. The kinetic analysis was calculated, and the Vmax and Km values were 16.52 nmol/min and 50.78 µM, respectively, using the Lineweaver-Burk plot.


Asunto(s)
Cisteína Endopeptidasas/química , Virus de la Hepatitis del Pato/enzimología , Filogenia , Proteínas Virales/química , Proteasas Virales 3C , Virus de la Hepatitis del Pato/genética , Concentración de Iones de Hidrógeno , Isoxazoles/farmacología , Cinética , Fenilalanina/análogos & derivados , Pirrolidinonas/farmacología , Proteínas Recombinantes , Alineación de Secuencia , Valina/análogos & derivados
18.
Sci Rep ; 7(1): 16261, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176600

RESUMEN

During viral infections, some viruses subvert the host proteins to promote the translation or RNA replication with their protease-mediated cleavage. Poly (A)-binding protein (PABP) is a target for several RNA viruses; however, the impact of duck hepatitis A virus (DHAV) on PABP remains unknown. In this study, we demonstrated for the first time that DHAV infection stimulates a decrease in endogenous PABP and generates two cleavage fragments. On the basis of in vitro cleavage assays, an accumulation of PABP cleavage fragments was detected in duck embryo fibroblast (DEF) cell extracts incubated with functional DHAV 3C protease. In addition, DHAV 3C protease was sufficient for the cleavage of recombinant PABP without the assistance of other eukaryotic cellular cofactors. Furthermore, using site-directed mutagenesis, our data demonstrated a 3C protease cleavage site located between Q367 and G368 in duck PABP. Moreover, the knockdown of PABP inhibited the production of viral RNA, and the C-terminal domain of PABP caused a reduction in viral replication compared to the N-terminal domain. Taken together, these findings suggested that DHAV 3C protease mediates the cleavage of PABP, which may be a strategy to manipulate viral replication.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Virus de la Hepatitis A/enzimología , Proteínas de Unión a Poli(A)/metabolismo , Proteínas Virales/metabolismo , Proteasas Virales 3C , Animales , Patos , Replicación Viral/genética , Replicación Viral/fisiología
19.
Future Microbiol ; 10(9): 1529-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26343779

RESUMEN

Enteroviruses are a large group of small nonenveloped viruses that cause common and debilitating illnesses affecting humans and animals worldwide. The capsid composed by viral structural proteins packs the RNA genome. It is becoming apparent that structural proteins of enteroviruses play versatile roles in the virus-host interaction in the viral life cycle, more than just a shell. Furthermore, structural proteins to some extent may be associated with viral virulence and pathogenesis. Better understanding the roles of structural proteins in enterovirus infection may lead to the development of potential antiviral strategies. Here, we discuss recent advances from studies on the role of structural proteins in enterovirus infection and antiviral therapeutics targeted structural proteins.


Asunto(s)
Infecciones por Enterovirus/terapia , Infecciones por Enterovirus/virología , Enterovirus/patogenicidad , Proteínas Estructurales Virales/fisiología , Animales , Antivirales/uso terapéutico , Proteínas de la Cápside/fisiología , Enterovirus/química , Interacciones Huésped-Patógeno , Humanos , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA