Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
New Phytol ; 242(3): 1275-1288, 2024 May.
Article En | MEDLINE | ID: mdl-38426620

Rhizosphere microbiomes are pivotal for crop fitness, but the principles underlying microbial assembly during root-soil interactions across soils with different nutrient statuses remain elusive. We examined the microbiomes in the rhizosphere and bulk soils of maize plants grown under six long-term (≥ 29 yr) fertilization experiments in three soil types across middle temperate to subtropical zones. The assembly of rhizosphere microbial communities was primarily driven by deterministic processes. Plant selection interacted with soil types and fertilization regimes to shape the structure and function of rhizosphere microbiomes. Predictive functional profiling showed that, to adapt to nutrient-deficient conditions, maize recruited more rhizobacteria involved in nutrient availability from bulk soil, although these functions were performed by different species. Metagenomic analyses confirmed that the number of significantly enriched Kyoto Encyclopedia of Genes and Genomes Orthology functional categories in the rhizosphere microbial community was significantly higher without fertilization than with fertilization. Notably, some key genes involved in carbon, nitrogen, and phosphorus cycling and purine metabolism were dominantly enriched in the rhizosphere soil without fertilizer input. In conclusion, our results show that maize selects microbes at the root-soil interface based on microbial functional traits beneficial to its own performance, rather than selecting particular species.


Alphaproteobacteria , Microbiota , Zea mays/microbiology , Soil Microbiology , Soil/chemistry , Rhizosphere , Fertilization
2.
Nat Commun ; 13(1): 3361, 2022 06 11.
Article En | MEDLINE | ID: mdl-35688828

Microbiomes are important for crop performance. However, a deeper knowledge of crop-associated microbial communities is needed to harness beneficial host-microbe interactions. Here, by assessing the assembly and functions of maize microbiomes across soil types, climate zones, and genotypes, we found that the stem xylem selectively recruits highly conserved microbes dominated by Gammaproteobacteria. We showed that the proportion of bacterial taxa carrying the nitrogenase gene (nifH) was larger in stem xylem than in other organs such as root and leaf endosphere. Of the 25 core bacterial taxa identified in xylem sap, several isolated strains were confirmed to be active nitrogen-fixers or to assist with biological nitrogen fixation. On this basis, we established synthetic communities (SynComs) consisting of two core diazotrophs and two helpers. GFP-tagged strains and 15N isotopic dilution method demonstrated that these SynComs do thrive and contribute, through biological nitrogen fixation, 11.8% of the total N accumulated in maize stems. These core taxa in xylem sap represent an untapped resource that can be exploited to increase crop productivity.


Microbiota , Nitrogen Fixation , Bacteria , Nitrogen , Plant Roots/microbiology , Plants , Soil Microbiology , Xylem , Zea mays
3.
J Sci Food Agric ; 102(9): 3636-3643, 2022 Jul.
Article En | MEDLINE | ID: mdl-34888881

BACKGROUND: Humic acid (HA)-enhanced urea (HAU) is the top-selling efficiency-enhanced urea in China. Comprehensive investigation into the structure and efficacy of HA complex formation with urea (HACU) - the main reaction product during HAU's production - is required to clarify the reaction mechanism between HA and urea, and to provide guidance for the development of high-efficiency HAU. RESULTS: HACU showed discrepant structural and compositional features from raw HA. Nitrogen (N) content in HACU was 7.3 times greater than that of HA. Several high-resolution analytical methods showed a sharp increase of ammonia in the gaseous product during HACU pyrolysis, suggesting that urea contributed N to HACU. HACU was characterized with significantly fewer carboxyl groups than in raw HA, implying that the carboxyl group was the main group in HA to participate in the reaction between HA and urea. The presence of amide-N in HACU verified the structure of the reaction product. Furthermore, both HACU and HA could enhance the biomass in hydroponically grown maize seedlings, but the highest stimulation for HACU came about when its carbon concentrations were 50-100 mg L-1 , higher than the optimal carbon concentration for HA (25 mg L-1 ), attributed to the lower carboxyl group content for HACU to some extent. CONCLUSION: During HAU's production, reaction with N derived from urea to form amide-N decreased the carboxyl groups in HA, leading to higher concentrations for HACU required to achieve the similar bioefficacy of HA. © 2021 Society of Chemical Industry.


Humic Substances , Zea mays , Biomass , Carbon , Humic Substances/analysis , Hydroponics , Soil/chemistry , Urea/chemistry
4.
Sci Rep ; 10(1): 7198, 2020 04 29.
Article En | MEDLINE | ID: mdl-32350351

Different fertilization regimes can substantially influence soil fungal community composition, yet fewer studies try to control for the effects of nitrogen input. Here, we investigated the impact of fertilization with equal nitrogen upon soil properties and soil fungal diversity and community composition in the North China Plain in a long-term field experiment. Long-term (32 years) fertilization regimes were applied with equal amounts of nitrogen: no chemical fertilizer or organic manure; chemical fertilization only; organic manure fertilization only, and; combination of 1/2 chemical fertilizer and 1/2 organic manure. Then we investigated the influence of these four fertilization regimes to soil properties, fungal diversity and community composition. The results showed that applying organic manure significantly influenced soil properties. Illumina MiSeq sequencing and its analysis revealed that organic manure fertilization significantly changed soil fungal alpha diversity, but chemical fertilization did not. Although soil fungal community composition did not differ significantly among all the fertilization regimes at the phylum and class levels, they did show differences in the abundance of dominant fungi. Yet at the genus level, soil fungal community composition, abundance, and beta diversity was affected by all fertilization regimes. Application of organic manure also reduced the abundance of soil-born fungal pathogens such as Fusarium. Our results suggest that long-term application of organic manure could markedly improve soil properties, altering soil fungal community composition and its diversity. Moreover, organic manure fertilization could limit soil-born fungal diseases, to further contribute to soil ecosystem sustainability.


Fertilizers , Fungi/immunology , Mycobiome/physiology , Soil Microbiology , Soil , China , Fungi/classification
...