Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 897: 165370, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423285

RESUMEN

Microplastics (MPs) and Perfluorooctanoic acid (PFOA) have contaminated nearly all types of ecosystems, including marine, terrestrial and freshwater habitats, posing a severe threat to the ecological environment. However, their combined toxicity on aquatic organisms (e.g., macrophytes) remains unknown. This study investigated single and combined toxic effects of polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), polyethylene terephthalate (PET) and PFOA on Vallisneria natans (V. natans) and associated biofilms. Results showed that MPs and PFOA significantly affected plant growth, while the magnitude of the effect was associated with concentrations of PFOA and the types of MPs, and antagonistic effects were induced at combined MPs and PFOA exposure. In addition, antioxidant responses in plants, such as promoted activities of SOD and POD, as well as increased content of GSH and MDA, were triggered effectively by exposure to MPs and PFOA alone and in combination. Ultrastructural changes revealed the stress response of leaf cells and the damage to organelles. Moreover, single and combined exposure to MPs and PFOA altered the diversity and richness of the microbial community in the leaf biofilms. These results indicated that the coexistence of MPs and PFOA can induce effective defense mechanisms of V. natans and change the associated biofilms at given concentrations in the aquatic ecosystems.


Asunto(s)
Microbiota , Microplásticos , Plásticos , Biopelículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA