Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Article En | MEDLINE | ID: mdl-38734385

BACKGROUND: While the daily rhythm of allergic rhinitis (AR) has long been recognized, the molecular mechanism underlying this phenomenon remains enigmatic. OBJECTIVE: We aim to investigate the role of circadian clock in AR development and to clarify the mechanism by which the daily rhythm of AR is generated. METHODS: AR was induced in mice using the ovalbumin method. Toluidine blue staining, LC-MS/MS analysis, qPCR, and immunoblotting were performed with AR and control mice. RESULTS: Ovalbumin-induced AR is diurnally rhythmic and associated with clock gene disruption in nasal mucosa. In particular, Rev-erbα is generally down-regulated, and its rhythm retained but with a near 12-h phase shift. Furthermore, global knockout of the core clock gene Bmal1 or Rev-erbα increases the susceptibility of mice to AR and blunts AR rhythmicity. Importantly, nasal SCCs (solitary chemosensory cells) are rhythmically activated, and inhibition of the SCC pathway leads to attenuated AR and a loss of its rhythm. Moreover, rhythmic activation of SCCs is accounted for by diurnal expression of ChAT (an enzyme responsible for the synthesis of acetylcholine) and temporal generation of the neurotransmitter acetylcholine. Mechanistically, REV-ERBα trans-represses Chat through direct binding to a specific response element, generating a diurnal oscillation in this target gene. CONCLUSION: These findings identify SCCs, under the control of REV-ERBα, as a driver of AR rhythmicity, and suggest targeting SCCs as a new avenue for AR management.

3.
Mol Neurobiol ; 61(4): 2197-2214, 2024 Apr.
Article En | MEDLINE | ID: mdl-37864767

Traumatic spinal cord injury (TSCI) is a prevalent central nervous system condition that imposes a significant burden on both families and society, affecting more than 2 million people worldwide. Recently, there has been increasing interest in bone marrow mesenchymal stem cell (BMSC) transplantation as a promising treatment for spinal cord injury (SCI) due to their accessibility and low immunogenicity. However, the mere transplantation of BMSCs has limited capacity to directly participate in the repair of host spinal cord nerve function. MiR-28-5p, identified as a key differentially expressed miRNA in spinal cord ischemia-reperfusion injury, exhibits differential expression and regulation in various neurological diseases. Nevertheless, its involvement in this process and its specific regulatory mechanisms in SCI remain unclear. Therefore, this study aimed to investigate the potential mechanisms through which miR-28-5p promotes the neuronal differentiation of BMSCs both in vivo and in vitro. Our results indicate that miR-28-5p may directly target Notch1, thereby facilitating the neuronal differentiation of BMSCs in vitro. Furthermore, the transplantation of lentivirus-mediated miR-28-5p-overexpressed BMSCs into SCI rats effectively improved footprint tests and Basso, Beattie, and Bresnahan (BBB) scores, ameliorated histological morphology (hematoxylin-eosin [HE] and Nissl staining), promoted axonal regeneration (MAP2 and growth-associated protein 43 [GAP43]), and facilitated axonal remyelination (myelin basic protein [MBP]). These findings may suggest that miR-28-5p-modified BMSCs could serve as a therapeutic target to enhance the behavioral and neurological recovery of SCI rats.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , MicroRNAs , Spinal Cord Injuries , Humans , Rats , Animals , Mesenchymal Stem Cell Transplantation/methods , Spinal Cord Injuries/pathology , Spinal Cord/pathology , MicroRNAs/genetics , Mesenchymal Stem Cells/metabolism , Recovery of Function
4.
Mol Neurobiol ; 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38015303

Spinal cord injury (SCI) is a prevalent and significant injury to the central nervous system, resulting in severe consequences. This injury is characterized by motor, sensory, and excretory dysfunctions below the affected spinal segment. Transplantation of bone marrow mesenchymal stem cells (BMSCs) has emerged as a potential treatment for SCI. However, the low survival as well as the differentiation rates of BMSCs within the spinal cord microenvironment significantly limit their therapeutic efficiency. Tauroursodeoxycholic acid (TUDCA), an active ingredient found in bear bile, has demonstrated its neuroprotective, antioxidant, and antiapoptotic effects on SCI. Thus, the present study was aimed to study the possible benefits of combining TUDCA with BMSC transplantation using an animal model of SCI. The results showed that TUDCA significantly enhanced BMSC viability and reduced apoptosis (assessed by Annexin V-FITC, TUNEL, Bax, Bcl-2, and Caspase-3) as well as oxidative stress (assessed by ROS, GSH, SOD, and MDA) both in vitro and in vivo. Additionally, TUDCA accelerated tissue regeneration (assessed by HE, Nissl, MAP2, MBP, TUJ1, and GFAP) and improved functional recovery (assessed by BBB score) following BMSC transplantation in SCI. These effects were mediated via the Nrf-2 signaling pathway, as evidenced by the upregulation of Nrf-2, NQO-1, and HO-1 expression levels. Overall, these results indicate that TUDCA could serve as a valuable adjunct to BMSC transplantation therapy for SCI, potentially enhancing its therapeutic efficacy.

5.
Theranostics ; 13(8): 2657-2672, 2023.
Article En | MEDLINE | ID: mdl-37215573

Rationale: The role of circadian clock in pituitary tumorigenesis remains elusive. Here we investigate whether and how circadian clock modulates the development of pituitary adenomas. Methods and Results: We found altered expression of pituitary clock genes in patients with pituitary adenomas. In particular, PER2 is prominently upregulated. Further, jetlagged mice with PER2 upregulation have accelerated growth of GH3 xenograft tumor. Conversely, loss of Per2 protects mice against developing estrogen-induced pituitary adenoma. Similar antitumor effect is observed for SR8278, a chemical that can decrease pituitary PER2 expression. RNA-seq analysis suggests involvement of cell cycle disturbance in PER2 regulation of pituitary adenoma. Subsequent in vivo and cell-based experiments validate that PER2 induces pituitary expression of Ccnb2, Cdc20 and Espl1 (three cell cycle genes) to facilitate cell cycle progression and inhibit apoptosis, thereby promoting pituitary tumorigenesis. Mechanistically, PER2 regulates the transcription of Ccnb2, Cdc20 and Espl1 through enhancing the transcriptional activity of HIF-1α. HIF-1α trans-activates Ccnb2, Cdc20 and Espl1 via direct binding to its specific response element in the gene promoters. Conclusion: PER2 integrates circadian disruption and pituitary tumorigenesis. These findings advance our understanding of crosstalk between circadian clock and pituitary adenomas and highlight the relevance of clock-based approaches in disease management.


Circadian Clocks , Pituitary Neoplasms , Humans , Mice , Animals , Pituitary Neoplasms/genetics , Circadian Rhythm/genetics , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Circadian Clocks/genetics , Cell Cycle Proteins/metabolism , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics
6.
Aging (Albany NY) ; 14(8): 3400-3415, 2022 04 19.
Article En | MEDLINE | ID: mdl-35439733

Circular RNA (circRNA) is related to many human diseases including osteoarthritis (OA). Our research purpose was to show that functional circRNAs have a role in the pathogenesis of OA, while also identifying potential circRNA that bind to miRNA-27b-3p. Microarray analysis was used to evaluate the expression of CircRNA in OA and normal cartilage. The role and functional mechanism of Circ_0000423 up-regulation were detected in OA and verified in vitro and in vivo. RNA transfection, qRT-PCR, Western blot analysis, immunofluorescence, and dual-luciferase assays were used to investigate the interaction between Circ_0000423 and miRNA-27b-3p in vitro. The roles of Circ_0000423 were discussed in vivo. Our results discovered 11 down-regulated circRNAs and 101 up-regulated circRNAs between control and OA tissues, and confirmed that Circ_0000423 an increase significantly in OA tissues by evaluating the different circRNAs expressions. Meanwhile, luciferase analysis confirmed Circ_0000423 can be directly targeted by miRNA-27b-3p and act as a miRNA-27b-3p sponge. Circ_0000423 can influence MMP-13 and collagen II expression by targeting miRNA-27b-3p expression as ceRNA in OA. Furthermore, AAV-shRNA-Circ 0000423 intra-articular injection slows the progression of OA by decreasing articular cartilage destruction and erosion, joint surface fibrosis, osteophyte formation, MMP-13 expression, and increasing collagen II expression in the articular cartilage of ACLT-induced OA mice model. These findings confirmed that the Circ_0000423-miRNA-27b-3p-MMP-13 axis could affect the pathogenesis of OA which might lead to a novel target for diagnostic molecular biological indicators and potential OA treatments.


Cartilage, Articular , MicroRNAs , Osteoarthritis , Animals , Cartilage, Articular/metabolism , Matrix Metalloproteinase 13/genetics , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoarthritis/metabolism , RNA, Circular/genetics
7.
Drug Dev Res ; 83(3): 669-679, 2022 05.
Article En | MEDLINE | ID: mdl-34842291

Spinal cord injury (SCI) leads to microvascular damage and the destruction of the blood spinal cord barrier (BSCB), which can progress into secondary injuries, such as apoptosis and necrosis of neurons and glia, culminating in permanent neurological deficits. BSCB restoration is the primary goal of SCI therapy, although very few drugs can repair damaged barrier structure and permeability. Sodium tanshinone IIA sulfonate (STS) is commonly used to treat cardiovascular disease. However, the therapeutic effects of STS on damaged BSCB during the early stage of SCI remain uncertain. Therefore, we exposed spinal cord microvascular endothelial cells to H2 O2 and treated them with different doses of STS. In addition to protecting the cells from H2 O2 -induced apoptosis, STS also reduced cellular permeability. In the in vivo model of SCI, STS reduced BSCB permeability, relieved tissue edema and hemorrhage, suppressed MMP activation and prevented the loss of tight junction and adherens junction proteins. Our findings indicate that STS treatment promotes SCI recovery, and should be investigated further as a drug candidate against traumatic SCI.


Endothelial Cells , Spinal Cord Injuries , Animals , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Phenanthrenes , Rats , Rats, Sprague-Dawley , Spinal Cord/blood supply , Spinal Cord/metabolism , Spinal Cord Injuries/drug therapy
...