Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 229
1.
Cell Biol Toxicol ; 40(1): 37, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777957

Bisphenol A (BPA) is a common component in the manufacture of daily plastic consumer goods. Recent studies have suggested that prenatal exposure to BPA can increase the susceptibility of offspring to mental illness, although the underlying mechanisms remain unclear. In this study, we performed transcriptomic and epigenomic profiling in the adult mouse brain following prenatal exposure to low-dose BPA. We observed a sex-specific transcriptional dysregulation in the cortex, with more significant differentially expressed genes was observed in adult cortex from male offspring. Moreover, the upregulated genes primarily influenced neuronal functions, while the downregulated genes were significantly associated with energy metabolism pathways. More evidence supporting impaired mitochondrial function included a decreased ATP level and a reduced number of mitochondria in the cortical neuron of the BPA group. We further investigated the higher-order chromatin regulatory patterns of DEGs by incorporating published Hi-C data. Interestingly, we found that upregulated genes exhibited more distal interactions with multiple enhancers, while downregulated genes displayed relatively short-range interactions among adjacent genes. Our data further revealed decreased H3K9me3 signal on the distal enhancers of upregulated genes, whereas increased DNA methylation and H3K27me3 signals on the promoters of downregulated genes. In summary, our study provides compelling evidence for the potential health risks associated with prenatal exposure to BPA, and uncovers sex-specific transcriptional changes with a complex interplay of multiple epigenetic mechanisms.


Benzhydryl Compounds , Brain , DNA Methylation , Epigenesis, Genetic , Phenols , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Epigenesis, Genetic/drug effects , Male , Mice , Brain/metabolism , Brain/drug effects , DNA Methylation/drug effects , Transcriptome/drug effects , Transcriptome/genetics , Mice, Inbred C57BL
2.
Genomics ; 116(3): 110852, 2024 May.
Article En | MEDLINE | ID: mdl-38703969

Autophagy, a highly conserved process of protein and organelle degradation, has emerged as a critical regulator in various diseases, including cancer progression. In the context of liver cancer, the predictive value of autophagy-related genes remains ambiguous. Leveraging chip datasets from the TCGA and GTEx databases, we identified 23 differentially expressed autophagy-related genes in liver cancer. Notably, five key autophagy genes, PRKAA2, BIRC5, MAPT, IGF1, and SPNS1, were highlighted as potential prognostic markers, with MAPT showing significant overexpression in clinical samples. In vitro cellular assays further demonstrated that MAPT promotes liver cancer cell proliferation, migration, and invasion by inhibiting autophagy and suppressing apoptosis. Subsequent in vivo studies further corroborated the pro-tumorigenic role of MAPT by suppressing autophagy. Collectively, our model based on the five key genes provides a promising tool for predicting liver cancer prognosis, with MAPT emerging as a pivotal factor in tumor progression through autophagy modulation.


Autophagy , Liver Neoplasms , tau Proteins , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Autophagy/genetics , tau Proteins/genetics , tau Proteins/metabolism , Prognosis , Cell Line, Tumor , Survivin/genetics , Survivin/metabolism , Cell Proliferation , Animals , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Biomarkers, Tumor/genetics , Cell Movement , Mice , Apoptosis , Gene Expression Regulation, Neoplastic , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism
3.
RSC Adv ; 14(15): 10516-10525, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38567331

Magnesium-based coatings have attracted great attention in surface modification of titanium implants due to their superior angiogenic and osteogenic properties. However, their biological effects as a carbonate-based constituent remain unrevealed. In this study, magnesium carbonate coatings were prepared on titanium surfaces under hydrothermal conditions and subsequently treated with hydrogen peroxide. Also, their antibacterial activity and in vitro cell biocompatibility were evaluated. The obtained coatings consisted of nanoparticles without cracks and exhibited excellent adhesion to the substrate. X-ray diffraction (XRD) results indicated pure magnesium carbonate coatings formed on the Ti surface after hydrothermal treatment. After hydrogen peroxide treatment, the phase composition of the coatings had no obvious change. Compared to the untreated coatings, the hydrogen peroxide-treated coatings showed increased surface roughness and hydrophilicity. Co-culture with Staphylococcus aureus (S. aureus) demonstrated that the obtained coatings had good antibacterial activity. In vitro cell culture results showed that the hydrogen peroxide-treated coatings enhanced the viability, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). These findings suggest that this MgCO3-based coating exhibits excellent antibacterial performance and osteogenic potential. Based on the above, this study provides a simple method for preparing titanium implants with dual antibacterial and osteogenic capabilities, holding great promise in clinical applications.

4.
J Trace Elem Med Biol ; 84: 127437, 2024 Jul.
Article En | MEDLINE | ID: mdl-38564977

INTRODUCTION: Bimetallic nanoparticles, specifically Zinc oxide (ZnO) and Silver (Ag), continue to much outperform other nanoparticles investigated for a variety of biological uses in the field of cancer therapy. This study introduces biosynthesis of bimetallic silver/zinc oxide nanocomposites (Ag@ZnO NCs) using the Crocus sativus extract and evaluates their anti-cancer properties against cervical cancer. METHODS: The process of generating bimetallic nanoparticles (NPs), namely Ag@ZnO NCs, through the utilization of Crocus sativus extract proved to be uncomplicated and eco-friendly. Various methods, such as UV-vis, DLS, FTIR, EDX, and SEM analyses, were utilized to characterize the generated Ag@ZnO NCs. The MTT assay was employed to assess the cytotoxic properties of biosynthesized bimetallic Ag@ZnO NCs against the HeLa cervical cancer cell line. Moreover, the impact of Ag@ZnO NCs on HeLa cells was assessed by examining cell survival, ROS production, MMP levels, and induced apoptosis. Through western blot analysis, the expression levels of the PI3K, AKT, mTOR, Cyclin D, and CDK proteins seemed to be ascertained. Using flow cytometry, the cancer cells' progression through necrosis and apoptosis, in addition to the cell cycle analysis, were investigated. RESULTS: Bimetallic Ag@ZnO NCs that were biosynthesized showed a high degree of stability, as demonstrated by the physicochemical assessments. The median size of the particles in these NCs was approximately 80-90 nm, and their zeta potential was -14.70 mV. AgNPs and ZnO were found, according to EDX data. Further, Ag@ZnO NCs hold promise as a potential treatment for cervical cancer. After 24 hours of treatment, a dosage of 5 µg/mL or higher resulted in a maximum inhibitory effect of 58 ± 2.9. The concurrent application of Ag/ZnO NPs to HeLa cells resulted in elevated apoptotic signals and a significant generation of reactive oxygen species (ROS). As a result, the bimettalic Ag@ZnO NCs treatment has been recognized as a chemotherapeutic intervention by inhibiting the production of PI3K, AKT, and mTOR-mediated regulation of propagation and cell cycle-regulating proteins. CONCLUSIONS: The research yielded important insights into the cytotoxic etiology of biosynthesized bimetallic Ag@ZnO NCs against HeLa cells. The biosynthesized bimetallic Ag@ZnO NCs have a significant antitumor potential, which appears to be associated with the development of oxidative stress, which inhibits the development of the cell cycle and the proliferation of cells. Therefore, in the future, biosynthesized bimetallic Ag@ZnO NCs may be used as a powerful anticancer drug to treat cervical cancer.


Antineoplastic Agents , Apoptosis , Cell Proliferation , Nanocomposites , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Silver , TOR Serine-Threonine Kinases , Uterine Cervical Neoplasms , Zinc Oxide , Humans , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Silver/chemistry , Silver/pharmacology , TOR Serine-Threonine Kinases/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Female , HeLa Cells , Phosphatidylinositol 3-Kinases/metabolism , Nanocomposites/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Metal Nanoparticles/chemistry , Drug Screening Assays, Antitumor , Signal Transduction/drug effects
5.
Cell Commun Signal ; 22(1): 182, 2024 03 15.
Article En | MEDLINE | ID: mdl-38491522

BACKGROUND: Diabetic angiogenesis is closely associated with disabilities and death caused by diabetic microvascular complications. Advanced glycation end products (AGEs) are abnormally accumulated in diabetic patients and are a key pathogenic factor for diabetic angiogenesis. The present study focuses on understanding the mechanisms underlying diabetic angiogenesis and identifying therapeutic targets based on these mechanisms. METHODS: In this study, AGE-induced angiogenesis serves as a model to investigate the mechanisms underlying diabetic angiogensis. Mouse aortic rings, matrigel plugs, and HUVECs or 293T cells were employed as research objects to explore this pathological process by using transcriptomics, gene promoter reporter assays, virtual screening and so on. RESULTS: Here, we found that AGEs activated Wnt/ß-catenin signaling pathway and enhanced the ß-catenin protein level by affecting the expression of ß-catenin degradation-related genes, such as FZDs (Frizzled receptors), LRPs (LDL Receptor Related Proteins), and AXIN1. AGEs could also mediate ß-catenin Y142 phosphorylation through VEGFR1 isoform5. These dual effects of AGEs elevated the nuclear translocation of ß-catenin and sequentially induced the expression of KDR (Kinase Insert Domain Receptor) and HDAC9 (Histone Deacetylase 9) by POU5F1 and NANOG, respectively, thus mediating angiogenesis. Finally, through virtual screening, Bioymifi, an inhibitor that blocks VEGFR1 isoform5-ß-catenin complex interaction and alleviates AGE-induced angiogenesis, was identified. CONCLUSION: Collectively, this study offers insight into the pathophysiological functions of ß-catenin in diabetic angiogenesis.


Diabetes Complications , Diabetes Mellitus , Animals , Humans , Mice , Angiogenesis , beta Catenin/metabolism , Histone Deacetylases/metabolism , Phosphorylation , Repressor Proteins/metabolism , Up-Regulation , Vascular Endothelial Growth Factor Receptor-2/metabolism , Wnt Signaling Pathway
6.
Front Immunol ; 15: 1392734, 2024.
Article En | MEDLINE | ID: mdl-38515740

[This corrects the article DOI: 10.3389/fimmu.2024.1258740.].

7.
Int Urol Nephrol ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38436825

PURPOSE: The objective of this study is to investigate the associated risk factors of pulmonary infection in individuals diagnosed with chronic kidney disease (CKD). The primary goal is to develop a predictive model that can anticipate the likelihood of pulmonary infection during hospitalization among CKD patients. METHODS: This retrospective cohort study was conducted at two prominent tertiary teaching hospitals. Three distinct models were formulated employing three different approaches: (1) the statistics-driven model, (2) the clinical knowledge-driven model, and (3) the decision tree model. The simplest and most efficient model was obtained by comparing their predictive power, stability, and practicability. RESULTS: This study involved a total of 971 patients, with 388 individuals comprising the modeling group and 583 individuals comprising the validation group. Three different models, namely Models A, B, and C, were utilized, resulting in the identification of seven, four, and eleven predictors, respectively. Ultimately, a statistical knowledge-driven model was selected, which exhibited a C-statistic of 0.891 (0.855-0.927) and a Brier score of 0.012. Furthermore, the Hosmer-Lemeshow test indicated that the model demonstrated good calibration. Additionally, Model A displayed a satisfactory C-statistic of 0.883 (0.856-0.911) during external validation. The statistical-driven model, known as the A-C2GH2S risk score (which incorporates factors such as albumin, C2 [previous COPD history, blood calcium], random venous blood glucose, H2 [hemoglobin, high-density lipoprotein], and smoking), was utilized to determine the risk score for the incidence rate of lung infection in patients with CKD. The findings revealed a gradual increase in the occurrence of pulmonary infections, ranging from 1.84% for individuals with an A-C2GH2S Risk Score ≤ 6, to 93.96% for those with an A-C2GH2S Risk Score ≥ 18.5. CONCLUSION: A predictive model comprising seven predictors was developed to forecast pulmonary infection in patients with CKD. This model is characterized by its simplicity, practicality, and it also has good specificity and sensitivity after verification.

8.
Lung Cancer ; 191: 107538, 2024 May.
Article En | MEDLINE | ID: mdl-38552544

OBJECTIVES: Given the modest efficacy of docetaxel in advanced non-small cell lung cancer (NSCLC), this study assesses the therapeutic potential and safety profile of anlotinib in combination with docetaxel compared to docetaxel monotherapy as a second-line therapy for patients with advanced NSCLC. MATERIALS AND METHODS: In this phase II study, patients with advanced NSCLC experiencing failure with first-line platinum-based regimens were randomized in a 1:1 ratio to receive either anlotinib plus docetaxel or docetaxel alone. Primary endpoint was progression-free survival (PFS), with overall survival (OS), objective response rate (ORR), disease control rate (DCR), and safety as secondary endpoints. RESULTS: A total of 83 patients were randomized. The combination of anlotinib and docetaxel significantly extended median PFS to 4.4 months compared to 1.6 months for docetaxel alone (hazard ratio [HR] = 0.38, 95 % confidence interval [CI]: 0.23-0.63, P = 0.0002), and also demonstrated superior ORR (32.5 % vs. 9.3 %, P = 0.0089) and DCR (87.5 % vs. 53.5 %, P = 0.0007). Median OS was observed at 12.0 months in the combination group vs. 10.9 months in the monotherapy group (HR = 0.82, 95 % CI: 0.47-1.43, P = 0.4803). For patients previously treated with immunotherapy, the median PFS was notably longer at 7.8 vs. 1.7 months (HR = 0.22, 95 % CI: 0.09-0.51, P = 0.0290). The incidence of grade ≥ 3 treatment-related adverse events, predominantly leukopenia (15.0 % vs. 7.0 %) and neutropenia (10.0 % vs. 5.0 %), was manageable across both groups. CONCLUSION: Anlotinib plus docetaxel offers a viable therapeutic alternative for patients with advanced NSCLC who failed first-line platinum-based treatments.


Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , Docetaxel , Indoles , Lung Neoplasms , Quinolines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Docetaxel/administration & dosage , Docetaxel/therapeutic use , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Female , Middle Aged , Aged , Indoles/administration & dosage , Indoles/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Quinolines/administration & dosage , Quinolines/therapeutic use , Quinolines/adverse effects , Adult , Neoplasm Staging , Treatment Outcome , Aged, 80 and over
10.
Front Immunol ; 15: 1258740, 2024.
Article En | MEDLINE | ID: mdl-38322269

Ubiquitin-specific proteases (USPs), as one of the deubiquitinating enzymes (DUBs) families, regulate the fate of proteins and signaling pathway transduction by removing ubiquitin chains from the target proteins. USPs are essential for the modulation of a variety of physiological processes, such as DNA repair, cell metabolism and differentiation, epigenetic modulations as well as protein stability. Recently, extensive research has demonstrated that USPs exert a significant impact on innate and adaptive immune reactions, metabolic syndromes, inflammatory disorders, and infection via post-translational modification processes. This review summarizes the important roles of the USPs in the onset and progression of inflammatory diseases, including periodontitis, pneumonia, atherosclerosis, inflammatory bowel disease, sepsis, hepatitis, diabetes, and obesity. Moreover, we highlight a comprehensive overview of the pathogenesis of USPs in these inflammatory diseases as well as post-translational modifications in the inflammatory responses and pave the way for future prospect of targeted therapies in these inflammatory diseases.


Ubiquitin-Specific Proteases , Ubiquitin , Humans , Ubiquitin/metabolism , Protein Processing, Post-Translational , Cell Differentiation , DNA Repair
11.
Macromol Biosci ; 24(4): e2300416, 2024 Apr.
Article En | MEDLINE | ID: mdl-38215472

Osteoporotic bone defects cannot withstand surgery with more significant trauma due to bone fragility, while systemic drug therapy has formidable adverse effects. Consequently, the present study introduces an innovatively devised injectable double-crosslinked hydrogel, as a potential therapeutic avenue for addressing varied shapes of osteoporotic bone defects via a minimally invasive approach. The injectable hydrogel is formed by the formation of Schiff base bonds between oxidized sodium alginate (OSA) and carboxymethyl chitosan, and the polymerization of gelatin methacrylate by UV light crosslinking. Additionally, alendronate sodium (ALN) is loaded into the hydrogel through Schiff base formation with OSA, and nanohydroxyapatite (nHA) is incorporated into the hydrogel via blending. The hydrogel demonstrates excellent injectability, and the nHA improves the mechanical properties of hydrogel and can promote bone formation. In addition, the hydrogel can sustain the release of ALN, which has the effect of inhibiting osteoclasts. Cell studies indicate that the hydrogel can promote the differentiation of osteoblasts and inhibit the activity of osteoclast, so as to obtain better osteogenic effect. Therefore, the injectable hydrogel can be used to repair osteoporotic bone defects through a minimally invasive, simple treatment modality.


Osteogenesis , Osteoporosis , Humans , Osteoclasts , Hydrogels/pharmacology , Hydrogels/chemistry , Schiff Bases , Osteoporosis/drug therapy
12.
RSC Adv ; 14(2): 954-962, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38174253

Flame-retardant materials that are mechanically robust, low cost and non-toxic from green and renewable resources are highly demanded in many fields. In this work, aerogels of alginate extracted from seaweeds were fabricated and reinforced with nanoclay. The nanoclay particles increase the molecular ordering (crystallinity) of the aerogels through physical interactions with alginate molecules. They also served as cross-linkers and flame-retardant additives to improve the mechanical strength, elasticity, thermal stability and flame-retarding properties of the aerogels. Under exposure to a butane flame (750 °C), the aerogels maintained their structural integrity and did not produce drips. An optimal loading of nanoclay which led to the best flame retardancy (non-flammable) of the aerogel was determined. The results of this work demonstrate that alginate-nanoclay composite aerogels can be promisingly used as flame-retardant thermal insulation materials.

13.
Bioact Mater ; 31: 18-37, 2024 Jan.
Article En | MEDLINE | ID: mdl-37593495

The resection of malignant osteosarcoma often results in large segmental bone defects, and the residual cells can facilitate recurrence. Consequently, the treatment of osteosarcoma is a major challenge in clinical practice. The ideal goal of treatment for osteosarcoma is to eliminate it thoroughly, and repair the resultant bone defects as well as avoid bacterial infections. Herein, we fabricated a selenium/strontium/zinc-doped hydroxyapatite (Se/Sr/Zn-HA) powder by hydrothermal method, and then employed it with polycaprolactone (PCL) as ink to construct composite scaffolds through 3D printing, and finally introduced them in bone defect repair induced by malignant osteosarcoma. The resultant composite scaffolds integrated multiple functions involving anti-tumor, osteogenic, and antibacterial potentials, mainly attributed to the anti-tumor effects of SeO32-, osteogenic effects of Sr2+ and Zn2+, and antibacterial effects of SeO32- and Zn2+. In vitro studies confirmed that Se/Sr/Zn-HA leaching solution could induce apoptosis of osteosarcoma cells, differentiation of MSCs, and proliferation of MC3T3-E1 while showing excellent antibacterial properties. In vivo tests demonstrated that Se/Sr/Zn-HA could significantly suppress tumors after 8 days of injection, and the Se/Sr/Zn-HA-PCLs scaffold repaired femoral defects effectively after 3 months of implantation. Summarily, the Se/Sr/Zn-HA-PCLs composite scaffolds developed in this study were effective for tumor treatment, bone defect repair, and post-operative anti-infection, which provided a great potential to be a facile therapeutic material for osteosarcoma resection.

14.
Int J Pharm ; 648: 123607, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37967688

Oral ulcers are a common inflammatory mucosal ulcer, and the moist and dynamic environment in the oral cavity makes topical pharmacological treatment of oral ulcers challenging. Herein, oral ulcer tissue adhesion nanoparticles were prepared by using esterification reaction between polyglutamic acid and tannic acid, and at the same time doxycycline hydrochloride was loaded into the nanoparticles. The obtained slow drug release effect of the drug-loaded nanoparticles reduced the toxicity of the drug, and by penetrating into the fine crevice region of the wound tissue and adhering to it, they could in-situ release the carried drug more effectively and thus have shown significant antibacterial effects. In addition, tannic acid in the system conferred adhesion, antioxidant and immune regulation activities to the nanocarriers. A rat oral ulcer model based on fluorescent labeling was established to investigate the retention of nanoparticles at the ulcer, and the results showed that the retention rate of drug-loaded nanoparticles at the ulcer was 17 times higher than that of pure drug. Due to the antibacterial and immune regulation effects of the drug-loaded nanoparticles, the healing of oral ulcer wounds was greatly accelerated. Such application of doxycycline hydrochloride loaded polyglutamic acid/tannic acid nanoparticles is a novel and effective treatment strategy for oral ulcer.


Nanoparticles , Oral Ulcer , Rats , Animals , Oral Ulcer/drug therapy , Doxycycline/pharmacology , Ulcer/drug therapy , Nanoparticle Drug Delivery System , Polyglutamic Acid , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Tannins
15.
PeerJ ; 11: e16211, 2023.
Article En | MEDLINE | ID: mdl-37901467

Objectives: Acute respiratory failure (ARF) is a common complication of bronchial asthma (BA). ARF onset increases the risk of patient death. This study aims to develop a predictive model for ARF in BA patients during hospitalization. Methods: This was a retrospective cohort study carried out at two large tertiary hospitals. Three models were developed using three different ways: (1) the statistics-driven model, (2) the clinical knowledge-driven model, and (3) the decision tree model. The simplest and most efficient model was obtained by comparing their predictive power, stability, and practicability. Results: This study included 398 patients, with 298 constituting the modeling group and 100 constituting the validation group. Models A, B, and C yielded seven, seven, and eleven predictors, respectively. Finally, we chose the clinical knowledge-driven model, whose C-statistics and Brier scores were 0.862 (0.820-0.904) and 0.1320, respectively. The Hosmer-Lemeshow test revealed that this model had good calibration. The clinical knowledge-driven model demonstrated satisfactory C-statistics during external and internal validation, with values of 0.890 (0.815-0.965) and 0.854 (0.820-0.900), respectively. A risk score for ARF incidence was created: The A2-BEST2 Risk Score (A2 (area of pulmonary infection, albumin), BMI, Economic condition, Smoking, and T2(hormone initiation Time and long-term regular medication Treatment)). ARF incidence increased gradually from 1.37% (The A2-BEST2 Risk Score ≤ 4) to 90.32% (A2-BEST2 Risk Score ≥ 11.5). Conclusion: We constructed a predictive model of seven predictors to predict ARF in BA patients. This predictor's model is simple, practical, and supported by existing clinical knowledge.


Patients , Respiratory Insufficiency , Humans , Retrospective Studies , Prognosis , Risk Factors , Respiratory Insufficiency/epidemiology
16.
Adv Healthc Mater ; 12(29): e2301560, 2023 11.
Article En | MEDLINE | ID: mdl-37548628

The application of most hydrogel bio-adhesives is greatly limited due to their high swelling, low underwater adhesion, and single function. Herein, a spatial multi-level physical-chemical and bio-inspired in-situ bonding strategy is proposed, to develop a multifunctional hydrogel bio-glue using polyglutamic acid (PGA), tyramine hydrochloride (TYR), and tannic acid (TA) as precursors and 4-(4,6-dimethoxytriazine-2-yl) -4-methylmorpholine hydrochloride(DMTMM) as condensation agent, which is used for tissue adhesion, hemostasis and repair. By introducing TYR and TA into the PGA chain, it is demonstrated that not only can the strong adhesion of bio-glue to the surface of various fresh tissues and wet materials be realized through the synergistic effect of spatial multi-level physical and chemical bonding, but also this glue can be endowed with the functions of anti-oxidation and hemostasis. The excellent performance of such bio-glue in the repair of the wound, liver, and cartilage is achieved, showing a great potential in clinical application for such bio-glue. This study will open up a brand-new avenue for the development of multifunctional hydrogel biological adhesive.


Adhesives , Tissue Adhesives , Humans , Hydrogels , Hemostasis , Tissue Adhesions , Tannins
17.
Front Immunol ; 14: 1175960, 2023.
Article En | MEDLINE | ID: mdl-37350968

Introduction: The combination of a PD-L1 inhibitor plus carboplatin/cisplatin and etoposide (EC/EP) has become a new standard first-line treatment for extensive-stage small-cell lung cancer (ES-SCLC). Combining concurrent palliative hypofractionated radiotherapy of the thorax (HFRT) and immunochemotherapy may have a synergistic effect. In this study, we explored an optimal model of combination radiotherapy with immunochemotherapy as first-line treatment of ES-SCLC. Patients and methods: In this multicenter single-arm phase 2 trial, patients with ES-SCLC received atezolizumab with EC/EP for two cycles (induction phase), then, those who did not progress received concurrent palliative HFRT and two cycles of atezolizumab with EC/EP (combination phase). Afterward they received atezolizumab every 3 weeks for a maximum of 2 years after study enrolment (maintenance phase). Prophylactic cranial irradiation (PCI) was recommended. The primary endpoints were safety and tolerance; the second endpoints were progression-free survival (PFS). Results: Forty patients were enrolled, and all had completed palliative HFRT and four cycles of immunochemotherapy. There were seven grade 3 adverse events (3 decreased neutrophil count, 1 anemia, 2 pneumonitis, 1 esoenteritis), two grade 4 adverse events (2 decreased white cell count) and no grade 5 toxicities. The pneumonitis rate was 12.5% (three grade 2 and two grade 3 events). At the median follow-up of 14.2 months (range, 6.8-28.7), the median PFS was 8.6 months (95%CI, 6.1-11.1). Conclusion: The addition of concurrent hypofractionated thoracic radiotherapy to first-line immunochemotherapy for ES-SCLC was well tolerated and showed promising clinical efficacy. Additional randomized trials are needed to validate benefits. Clinical trial registration: https://clinicaltrials.gov/ (NCT04636762).


Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Small Cell Lung Carcinoma/radiotherapy , Small Cell Lung Carcinoma/drug therapy , Cisplatin/therapeutic use , Carboplatin/therapeutic use
18.
Front Bioeng Biotechnol ; 11: 1181580, 2023.
Article En | MEDLINE | ID: mdl-37274168

Introduction: The repair and regeneration of growth plate injuries using tissue engineering techniques remains a challenge due to large bone bridge formation and low chondrogenic efficiency. Methods: In this study, a bilayer drug-loaded microspheres was developed that contains the vascular endothelial growth factor (VEGF) inhibitor, Bevacizumab, on the outer layer and insulin-like growth factor-1 (IGF-1), a cartilage repair factor, on the inner layer. The microspheres were then combined with bone marrow mesenchymal stem cells (BMSCs) in the gelatin methacryloyl (GelMA) hydrogel to create a composite hydrogel with good injectability and biocompatibility. Results: The in vitro drug-release profile of bilayer microspheres showed a sequential release, with Bevacizumab released first followed by IGF-1. And this hydrogel simultaneously inhibited angiogenesis and promoted cartilage regeneration. Finally, in vivo studies indicated that the composite hydrogel reduced bone bridge formation and improved cartilage regeneration in the rabbit model of proximal tibial growth plate injury. Conclusion: This bilayer microsphere-based composite hydrogel with sequential controlled release of Bevacizumab and IGF-1 has promising potential for growth plate injury repair.

19.
Adv Healthc Mater ; 12(23): e2300297, 2023 09.
Article En | MEDLINE | ID: mdl-37114597

Chronic nonhealing diabetic wounds are a serious complication of diabetes, with a high morbidity rate that can cause disability or death. The long period of inflammation and dysfunctional angiogenesis are the main reasons for wound-healing difficulty in diabetes. In this study, a multifunctional double-layer microneedle (DMN) is constructed to control infection and promote angiogenesis, meeting the multiple demands of the healing process of a diabetic wound. The double-layer microneedle is consisted in a hyaluronic acid substrate and a mixture of carboxymethyl chitosan and gelatin as the tip. The antibacterial drug tetracycline hydrochloride (TH) is loaded into the substrate of the microneedle to achieve rapid sterilization and promote resistance to external bacterial infections. The microneedle tip loaded with recombinant human epidermal growth factor (rh-EGF) is inserted into the skin, in response to gelatinase produced by resident microbe and disassociate to achieve the enzymatic response release. The double-layer drug-loaded microneedles (DMN@TH/rh-EGF) have antibacterial and antioxidant effects, and promote cell migration and angiogenesis in vitro. In an in vivo diabetic wound model, using rats, the DMN@TH/rh-EGF patch is able to inhibit inflammation, promote angiogenesis, collagen deposition, and tissue regeneration during the wound healing process, promoting its healing.


Diabetes Mellitus , Epidermal Growth Factor , Humans , Rats , Animals , Wound Healing , Inflammation , Anti-Bacterial Agents/pharmacology
20.
Macromol Biosci ; 23(9): e2300014, 2023 09.
Article En | MEDLINE | ID: mdl-37055877

Microneedles (MNs) are a new type of drug delivery method that can be regarded as an alternative to traditional transdermal drug delivery systems. Recently, MNs have attracted widespread attention for their advantages of effectiveness, safety, and painlessness. However, the functionality of traditional MNs is too monotonous and limits their application. To improve the efficiency of disease treatment and diagnosis by combining the advantages of MNs, the concept of intelligent stimulus-responsive MNs is proposed. Intelligent stimuli-responsive MNs can exhibit unique biomedical functions according to the internal and external environment changes. This review discusses the classification and principles of intelligent stimuli-responsive MNs, such as magnet, temperature, light, electricity, reactive oxygen species, pH, glucose, and protein. This review also highlights examples of intelligent stimuli-responsive MNs for biomedical applications, such as on-demand drug delivery, tissue repair, bioimaging, detection and monitoring, and photothermal therapy. These intelligent stimuli-responsive MNs offer the advantages of high biocompatibility, targeted therapy, selective detection, and precision treatment. Finally, the prospects and challenges for the application of intelligent stimuli-responsive MNs are discussed.


Drug Delivery Systems , Needles , Drug Delivery Systems/methods , Temperature , Electricity , Glucose
...