Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 827-836, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646771

The proportion and area of ratoon rice planting in China have been substantially increased, due to continuous improvement of rice breeding methods and consecutive innovation of cultivation technology, which has developed into one of rice planting modes with significant production efficiency. Combining the experience in research and practice, from the perspective of crop physiology and ecology, we reviewed the current situation and prospects of high-yielding formation and physiological mechanisms of ratoon rice. We focused on four key aspects: screening and breeding of ratoon rice cultivars and the classification; suitable stubble height for mechanically harvested ratoon rice, as well as water and fertilizer management; dry matter production and allocation in ratoon rice and the relationship with yield formation; regenerative activity and vigor of ratoon rice roots and their relationship with rhizosphere micro-ecological characteristics. As for the extending of mechanized low-cut stubbles ratoon rice technique, we should properly regulate the rhizosphere system, coordinate rhizosphere nutrient supply, germination of axillary buds, and tillering regeneration, to achieve the target of "four-high-one-low", that is high regeneration coefficient, high number of regeneration panicle, high harvest index, high yield, high quality, low-carbon and safe, aiming to improve the sustainability of ratoon rice industry.


Oryza , Oryza/growth & development , China , Crop Production/methods , Rhizosphere , Plant Breeding , Agriculture/methods , Fertilizers , Plant Roots/growth & development
2.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1340-1351, 2022 May.
Article Zh | MEDLINE | ID: mdl-35730093

It is of great significance to understand the effects of different rice cultivation methods in southeast China on greenhouse gas emission characteristics and carbon footprint of paddy fields during rice cultivation for rice sustainable production. In this study, the popular conventional rice 'Jiafuzhan' and hybrid rice 'Yongyou 2640' were used as materials to establish four rice cultivation patterns suitable for different ecological types in Fujian Province: 1) double-cropping system, early rice and late rice with Jiafuzhan (D-J); 2) early maturing ratooning system, first season rice and ratooning season rice with Jiafuzhan (R-J); 3) middle-maturing ratooning system, first season rice and ratooning season with Yongyou 2640 (R-Y); and 4) single cropping system with Yongyou 2640 (S-Y), which should be synchronized in heading time with the counterpart (the ratooning season rice). Greenhouse gas emissions from paddy soil were measured by the closed static black box observation method and the gas chromatography method, respectively. The total direct and indirect greenhouse gas emissions (carbon footprints) from different rice farming patterns were evaluated by using the life cycle analysis. The results showed that greenhouse gas emissions in different rice cropping systems were lower in the early growth stage, then decreased after reaching the peak at the booting stage, demonstrating a double peak curve in the whole growth stage, in which the first peak was higher in early season or first season than the second peak in the late season or ratooning season in the cropping patterns. Moreover, the total greenhouse gas emissions were significantly different among cropping systems. The global warming potential (GWP) of different cropping patterns was in order of R-Y>D-J>S-Y>R-J, while the annual greenhouse gas emission intensity (GHGI) was D-J>S-Y>R-Y>R-J. GWP and GHGI of the ratooning system decreased by 26.1% and 14.1%, respectively, compared with those of the double-cropping system. The same pattern was observed in the ratooning rice of Yongyou 2640, which were decreased by 74.3% and 56.7%, respectively, compared with the counterpart, Yongyou 2640 in a single-cropping system synchronized heading. Carbon footprint of rice per unit yield ranged from 0.38-1.08 kg CO2-eq.·kg-1 under the different cropping systems, of which the carbon footprint of rice per unit yield was the highest under the double cropping system compared with that under other cropping systems. The reverse was true in the case of carbon footprint of rice per unit yield under the ratooning system with Yongyou 2640. Additionally, the main source of carbon footprint of different rice cropping patterns was CH4, contributing 44.2%-71.5%, suggesting that rice ratooning system could significantly reduce global warming potential and carbon emission intensity of rice in comparison with other cropping patterns. Therefore, it is key to select rice varieties with high yield and low carbon emission and to establish the supporting scientific cultivation techniques for effective reduction of CH4 emission and carbon footprint of paddy fields and promotion of ratooning rice production.


Greenhouse Gases , Oryza , Agriculture/methods , Carbon/analysis , Carbon Footprint , China , Fertilizers/analysis , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Soil/chemistry
3.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4457-4466, 2021 Dec.
Article Zh | MEDLINE | ID: mdl-34951287

To clarify the interaction between land-use change and ecosystem service, the traditional ecosystem service valuation model was modified using the adjustment coefficients of biomass factor and socio-economic factor to evaluate ecosystem service value (ESV) of 24 towns in Anxi County from 1999 to 2019, aiming to understand the ecological response to land-use change. The results showed that ESV of 24 towns in Anxi County decreased gradually during the study period, with a decrease of 0.004 to 0.295 million yuan. Forestland and cultivated land made the largest contribution to ESV, followed by grassland and water bodies, whereas the contribution of other land types were negative. ESV could be increased by converting other land types into forestland, but be decreased by converting other land types into orchard land area (mainly tea plantation). The chemical fertilizer-monoculture management pattern of ratooning tea plantation reduced ESV, while the ecological cultivation of tea plantation could effectively improve soil microbial diversity and soil fertility, and finally enhance ESV.


Conservation of Natural Resources , Ecosystem , Biomass , China , Forests
...