Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36829755

RESUMEN

Rheumatoid arthritis (RA) is regarded as a chronic, immune-mediated disease that leads to the damage of various types of immune cells and signal networks, followed by inappropriate tissue repair and organ damage. RA is primarily manifested in the joints, but also manifests in the lungs and the vascular system. This study developed a method for the in vitro detection of RA through cyclic citrullinated peptide (CCP) antibodies and antigens. The diameter of a tilted-fiber Bragg grating (TFBG) biosensor was etched to 50 µm and then bonded with CCP antigens and antibodies. The small variations in the external refractive index and the optical fiber cladding were measured. The results indicated that the self-assembled layer of the TFBG biosensor was capable of detecting pre- and post-immune CCP antigen and CCP peptide concentrations within four minutes. A minimum CCP concentration of 1 ng/mL was detected with this method. This method is characterized by the sensor's specificity, ability to detect CCP reactions, user-friendliness, and lack of requirement for professional analytical skills, as the detections are carried out by simply loading and releasing the test samples onto the platform. This study provides a novel approach to medical immunosensing analysis and detection. Although the results for the detection of different concentrations of CCP antigen are not yet clear, it was possible to prove the concept that the biosensor is feasible even if the measurement is not easy and accurate at this stage. Further study and improvement are required.

2.
Analyst ; 147(20): 4562-4569, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36106760

RESUMEN

Non-endoscopic tools for the diagnostic evaluation of patients should be promoted in the field of biomedical assay and the need for highly sensitive, efficient, low-cost, and user-friendly sensors must be considered. Optical fibers are widely used in sensors because their properties meet the physical requirements for biomedical detection. The spectrum responses of the sensor create changes in refractive index, wavelength shifts, and transmission loss. This study presents a double helix DNA-shaped optical fiber sensor for biosensors. The sensing principle of the DNA-shaped sensor is based on the whispering gallery mode (WGM) formed by the interference in the fiber's bending region. The refractive index interference changes corresponding to the core and cladding layers, which create shifts in the spectrum affected by the radius of the bend. A self-assembled sensor layer formed with nanoparticles was coated onto the DNA-shaped sensor in a sandwich structure. The wavelength shifts in spectral response are traced by the concentrations of gastrin-17 at 0.1, 1, 10, and 50 µg ml-1. The sensing layer was formed from a layer-by-layer assembly of gold nanoparticles to improve the performance of the surface plasmon resonance (SPR).


Asunto(s)
Nanopartículas del Metal , Fibras Ópticas , ADN , Gastrinas , Oro/química , Humanos
3.
Polymers (Basel) ; 14(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35631992

RESUMEN

This study describes the fabrication of an electrospun, U-shaped optical fiber sensor for temperature measurements. The sensor is based on single mode fibers and was fabricated into a U-shaped optical fiber sensor through flame heating. This study applied electrospinning to coat PVA, a polymer, onto the sensor layer to reduce its sensitivity to humidity. The sensor is used to measure temperature variations ranging from 30 °C to 100 °C. The objectives of this study were to analyze the sensitivity variation of the sensor with different sensor layer thicknesses resulting from different electrospinning durations, as well as to simulate the wavelength signals generated at different electrospinning durations using COMSOL. The results revealed that the maximum wavelength sensitivity, transmission loss sensitivity, and linearity of the sensor were 25 dBm/°C, 70 pm/°C, and 0.956, respectively. Longer electrospinning durations resulted in thicker sensor layers and higher sensor sensitivity, that wavelength sensitivity of the sensor increased by 42%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...