Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(25): 13780-13787, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37315116

RESUMEN

Funneling excitation energy toward lower energy excited states is a key concept in photosynthesis, which is often realized with at most two chemically different types of pigment molecules. However, current synthetic approaches to establish energy funnels, or gradients, typically rely on Förster-type energy-transfer cascades along many chemically different molecules. Here, we demonstrate an elegant concept for a gradient in the excited-state energy landscape along micrometer-long supramolecular nanofibers based on the conjugated polymer poly(3-hexylthiophene), P3HT, as the single component. Precisely aligned P3HT nanofibers within a supramolecular superstructure are prepared by solution processing involving an efficient supramolecular nucleating agent. Employing hyperspectral imaging, we find that the lowest-energy exciton band edge continuously shifts to lower energies along the nanofibers' growth direction. We attribute this directed excited-state energy gradient to defect fractionation during nanofiber growth. Our concept provides guidelines for the design of supramolecular structures with an intrinsic energy gradient for nanophotonic applications.

2.
Adv Mater ; 35(25): e2300891, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37002556

RESUMEN

Efficient energy transport over long distances is essential for optoelectronic and light-harvesting devices. Although self-assembled nanofibers of organic molecules are shown to exhibit long exciton diffusion lengths, alignment of these nanofibers into films with large, organized domains with similar properties remains a challenge. Here, it is shown how the functionalization of C3 -symmetric carbonyl-bridged triarylamine trisamide (CBT) with oligodimethylsiloxane (oDMS) side chains of discrete length leads to fully covered surfaces with aligned domains up to 125 × 70 µm2 in which long-range exciton transport takes place. The nanoscale morphology within the domains consists of highly ordered nanofibers with discrete intercolumnar spacings within a soft amorphous oDMS matrix. The oDMS prevents bundling of the CBT fibers, reducing the number of defects within the CBT columns. As a result, the columns have a high degree of coherence, leading to exciton diffusion lengths of a few hundred nanometers with exciton diffusivities (≈0.05 cm2 s-1 ) that are comparable to those of a crystalline tetracene. These findings represent the next step toward fully covered surfaces of highly aligned nanofibers through functionalization with oDMS.

3.
Small ; 19(21): e2207537, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36861324

RESUMEN

The properties of semiconducting polymers are strongly influenced by their aggregation behavior, that is, their aggregate fraction and backbone planarity. However, tuning these properties, particularly the backbone planarity, is challenging. This work introduces a novel solution treatment to precisely control the aggregation of semiconducting polymers, namely current-induced doping (CID). It utilizes spark discharges between two electrodes immersed in a polymer solution to create strong electrical currents resulting in temporary doping of the polymer. Rapid doping-induced aggregation occurs upon every treatment step for the semiconducting model-polymer poly(3-hexylthiophene). Therefore, the aggregate fraction in solution can be precisely tuned up to a maximum value determined by the solubility of the doped state. A qualitative model for the dependences of the achievable aggregate fraction on the CID treatment strength and various solution parameters is presented. Moreover, the CID treatment can yield an extraordinarily high quality of backbone order and planarization, expressed in UV-vis absorption spectroscopy and differential scanning calorimetry measurements. Depending on the selected parameters, an arbitrarily lower backbone order can be chosen using the CID treatment, allowing for maximum control of aggregation. This method may become an elegant pathway to finely tune aggregation and solid-state morphology for thin-films of semiconducting polymers.

4.
J Am Chem Soc ; 142(18): 8323-8330, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32279503

RESUMEN

Efficient long-range energy transport along supramolecular architectures of functional organic molecules is a key step in nature for converting sunlight into a useful form of energy. Understanding and manipulating these transport processes on a molecular and supramolecular scale is a long-standing goal. However, the realization of a well-defined system that allows for tuning morphology and electronic properties as well as for resolution of transport in space and time is challenging. Here we show how the excited-state energy landscape and thus the coherence characteristics of electronic excitations can be modified by the hierarchical level of H-type supramolecular architectures. We visualize, at room temperature, long-range incoherent transport of delocalized singlet excitons on pico- to nanosecond time scales in single supramolecular nanofibers and bundles of nanofibers. Increasing the degree of coherence, i.e., exciton delocalization, via supramolecular architectures enhances exciton diffusivities up to 1 order of magnitude. In particular, we find that single supramolecular nanofibers exhibit the highest diffusivities reported for H-aggregates so far.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA