Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 214
1.
Proc Natl Acad Sci U S A ; 119(11): e2115308119, 2022 03 15.
Article En | MEDLINE | ID: mdl-35263230

SignificanceBisphenol A (BPA), found in many plastic products, has weak estrogenic effects that can be harmful to human health. Thus, structurally related replacements-bisphenol S (BPS) and bisphenol F (BPF)-are coming into wider use with very few data about their biological activities. Here, we compared the effects of BPA, BPS, and BPF on human mammary organoids established from normal breast tissue. BPS disrupted organoid architecture and induced supernumerary branching. At a proteomic level, the bisphenols altered the abundance of common targets and those that were unique to each compound. The latter included proteins linked to tumor-promoting processes. These data highlighted the importance of testing the human health effects of replacements that are structurally related to chemicals of concern.


Benzhydryl Compounds , Carcinogenesis , Estrogens , Mammary Glands, Human , Phenols , Proteome , Sulfones , Benzhydryl Compounds/toxicity , Carcinogenesis/chemically induced , Estrogens/toxicity , Humans , Mammary Glands, Human/drug effects , Mammary Glands, Human/pathology , Organoids/drug effects , Organoids/pathology , Phenols/toxicity , Proteome/drug effects , Proteomics , Sulfones/toxicity
2.
Cell Rep ; 38(7): 110375, 2022 02 15.
Article En | MEDLINE | ID: mdl-35172155

Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin ß1 and inhibits its downstream signaling, and Integrin ß1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin ß1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct.


Epithelium , Glycoproteins , Integrin beta1 , Mammary Glands, Animal , Morphogenesis , Signal Transduction , Animals , Cell Movement/genetics , Cell Polarity , Cell Proliferation , Down-Regulation , Epithelial Cells/metabolism , Epithelium/growth & development , Female , Gene Expression Regulation, Neoplastic , Glycoproteins/metabolism , Integrin beta1/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Mice, Transgenic , Models, Biological , Protein Binding
3.
Cell ; 185(4): 729-745.e20, 2022 02 17.
Article En | MEDLINE | ID: mdl-35063085

Brain metastasis (BrM) is the most common form of brain cancer, characterized by neurologic disability and an abysmal prognosis. Unfortunately, our understanding of the biology underlying human BrMs remains rudimentary. Here, we present an integrative analysis of >100,000 malignant and non-malignant cells from 15 human parenchymal BrMs, generated by single-cell transcriptomics, mass cytometry, and complemented with mouse model- and in silico approaches. We interrogated the composition of BrM niches, molecularly defined the blood-tumor interface, and revealed stromal immunosuppressive states enriched with infiltrated T cells and macrophages. Specific single-cell interrogation of metastatic tumor cells provides a framework of 8 functional cell programs that coexist or anticorrelate. Collectively, these programs delineate two functional BrM archetypes, one proliferative and the other inflammatory, that are evidently shaped through tumor-immune interactions. Our resource provides a foundation to understand the molecular basis of BrM in patients with tumor cell-intrinsic and host environmental traits.


Brain Neoplasms/pathology , Brain Neoplasms/secondary , Adult , Aged , Animals , Biomarkers, Tumor/metabolism , Brain Neoplasms/blood , Brain Neoplasms/immunology , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Female , Genetic Variation , Humans , Immune Evasion , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Models, Biological , Myeloid Cells/pathology , Principal Component Analysis , RNA-Seq , Single-Cell Analysis , T-Lymphocytes/immunology
4.
J Clin Invest ; 131(6)2021 03 15.
Article En | MEDLINE | ID: mdl-33720045

Treatment resistance leads to cancer patient mortality. Therapeutic approaches that employ synthetic lethality to target mutational vulnerabilities in key tumor cell signaling pathways have proven effective in overcoming therapeutic resistance in some cancers. Yet, tumors are organs composed of malignant cells residing within a cellular and noncellular stroma. Tumor evolution and resistance to anticancer treatment are mediated through a dynamic and reciprocal dialogue with the tumor microenvironment (TME). Accordingly, expanding tumor cell synthetic lethality to encompass contextual synthetic lethality has the potential to eradicate tumors by targeting critical TME circuits that promote tumor progression and therapeutic resistance. In this Review, we summarize current knowledge about the TME and discuss its role in treatment. We outline the concept of tumor cell-specific synthetic lethality and describe therapeutic approaches to expand this paradigm to leverage TME synthetic lethality to improve cancer therapy.


Neoplasms/genetics , Neoplasms/therapy , Synthetic Lethal Mutations , Tumor Microenvironment/genetics , Animals , Disease Progression , Drug Resistance, Neoplasm/genetics , Female , Humans , Immunotherapy , Male , Molecular Targeted Therapy , Neoplasms/immunology , Signal Transduction/genetics
5.
Nat Mater ; 20(4): 548-559, 2021 04.
Article En | MEDLINE | ID: mdl-33257795

Stromal stiffening accompanies malignancy, compromises treatment and promotes tumour aggression. Clarifying the molecular nature and the factors that regulate stromal stiffening in tumours should identify biomarkers to stratify patients for therapy and interventions to improve outcome. We profiled lysyl hydroxylase-mediated and lysyl oxidase-mediated collagen crosslinks and quantified the greatest abundance of total and complex collagen crosslinks in aggressive human breast cancer subtypes with the stiffest stroma. These tissues harbour the highest number of tumour-associated macrophages, whose therapeutic ablation in experimental models reduced metastasis, and decreased collagen crosslinks and stromal stiffening. Epithelial-targeted expression of the crosslinking enzyme, lysyl oxidase, had no impact on collagen crosslinking in PyMT mammary tumours, whereas stromal cell targeting did. Stromal cells in microdissected human tumours expressed the highest level of collagen crosslinking enzymes. Immunohistochemical analysis of biopsies from a cohort of patients with breast cancer revealed that stromal expression of lysyl hydroxylase 2, an enzyme that induces hydroxylysine aldehyde-derived collagen crosslinks and stromal stiffening, correlated significantly with disease specific mortality. The findings link tissue inflammation, stromal cell-mediated collagen crosslinking and stiffening to tumour aggression and identify lysyl hydroxylase 2 as a stromal biomarker.


Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Collagen/metabolism , Stromal Cells/metabolism , Tumor-Associated Macrophages/metabolism , Adult , Biopsy , Breast Neoplasms/immunology , Cell Line, Tumor , Female , Humans , Middle Aged , Protein-Lysine 6-Oxidase/metabolism , Stromal Cells/pathology
6.
Bioconjug Chem ; 32(1): 143-152, 2021 01 20.
Article En | MEDLINE | ID: mdl-33301672

This paper presents a method to synthetically tune atomically precise megamolecule nanobody-enzyme conjugates for prodrug cancer therapy. Previous efforts to create heterobifunctional protein conjugates suffered from heterogeneity in domain stoichiometry, which in part led to the failure of antibody-enzyme conjugates in clinical trials. We used the megamolecule approach to synthesize anti-HER2 nanobody-cytosine deaminase conjugates with tunable numbers of nanobody and enzyme domains in a single, covalent molecule. Linking two nanobody domains to one enzyme domain improved avidity to a human cancer cell line by 4-fold but did not increase cytotoxicity significantly due to lowered enzyme activity. In contrast, a megamolecule composed of one nanobody and two enzyme domains resulted in an 8-fold improvement in the catalytic efficiency and increased the cytotoxic effect by over 5-fold in spheroid culture, indicating that the multimeric structure allowed for an increase in local drug activation. Our work demonstrates that the megamolecule strategy can be used to study structure-function relationships of protein conjugate therapeutics with synthetic control of protein domain stoichiometry.


Antineoplastic Agents/therapeutic use , Enzymes/chemistry , Prodrugs/therapeutic use , Single-Domain Antibodies/chemistry , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Humans , Prodrugs/administration & dosage , Proof of Concept Study , Structure-Activity Relationship
7.
Nat Commun ; 11(1): 5120, 2020 10 09.
Article En | MEDLINE | ID: mdl-33037194

Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients.


Extracellular Matrix/pathology , Neoplasms/pathology , Animals , Cell Transformation, Neoplastic/pathology , Humans , Tumor Microenvironment
8.
BMC Cancer ; 20(1): 542, 2020 Jun 10.
Article En | MEDLINE | ID: mdl-32522170

BACKGROUND: Novel biomarkers are required to discern between breast tumors that should be targeted for treatment from those that would never become clinically apparent and/or life threatening for patients. Moreover, therapeutics that specifically target breast cancer (BC) cells with tumor-initiating capacity to prevent recurrence are an unmet need. We investigated the clinical importance of LGR5 in BC and ductal carcinoma in situ (DCIS) to explore LGR5 as a biomarker and a therapeutic target. METHODS: We stained BC (n = 401) and DCIS (n = 119) tissue microarrays with an antibody against LGR5. We examined an LGR5 knockdown ER- cell line that was orthotopically transplanted and used for in vitro colony assays. We also determined the tumor-initiating role of Lgr5 in lineage-tracing experiments. Lastly, we transplanted ER- patient-derived xenografts into mice that were subsequently treated with a LGR5 antibody drug conjugate (anti-LGR5-ADC). RESULTS: LGR5 expression correlated with small tumor size, lower grade, lymph node negativity, and ER-positivity. ER+ patients with LGR5high tumors rarely had recurrence, while high-grade ER- patients with LGR5high expression recurred and died due to BC more often. Intriguingly, all the DCIS patients who later died of BC had LGR5-positive tumors. Colony assays and xenograft experiments substantiated a role for LGR5 in ER- tumor initiation and subsequent growth, which was further validated by lineage-tracing experiments in ER- /triple-negative BC mouse models. Importantly, by utilizing LGR5high patient-derived xenografts, we showed that anti-LGR5-ADC should be considered as a therapeutic for high-grade ER- BC. CONCLUSION: LGR5 has distinct roles in ER- vs. ER+ BC with potential clinical applicability as a biomarker to identify patients in need of therapy and could serve as a therapeutic target for high-grade ER- BC.


Biomarkers, Tumor/analysis , Breast Neoplasms/chemistry , Carcinoma, Intraductal, Noninfiltrating/chemistry , Receptors, G-Protein-Coupled/analysis , Adult , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor/immunology , Breast Neoplasms/diagnosis , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/diagnosis , Carcinoma, Intraductal, Noninfiltrating/mortality , Carcinoma, Intraductal, Noninfiltrating/pathology , Cell Line, Tumor , Female , Heterografts , Humans , Mice , Middle Aged , Prognosis , RNA, Neoplasm/isolation & purification , Real-Time Polymerase Chain Reaction , Receptor, ErbB-2/analysis , Receptors, G-Protein-Coupled/immunology , Tissue Array Analysis/methods
9.
Nat Cell Biol ; 22(3): 310-320, 2020 03.
Article En | MEDLINE | ID: mdl-32144411

Although metastasis remains the cause of most cancer-related mortality, mechanisms governing seeding in distal tissues are poorly understood. Here, we establish a robust method for the identification of global transcriptomic changes in rare metastatic cells during seeding using single-cell RNA sequencing and patient-derived-xenograft models of breast cancer. We find that both primary tumours and micrometastases display transcriptional heterogeneity but micrometastases harbour a distinct transcriptome program conserved across patient-derived-xenograft models that is highly predictive of poor survival of patients. Pathway analysis revealed mitochondrial oxidative phosphorylation as the top pathway upregulated in micrometastases, in contrast to higher levels of glycolytic enzymes in primary tumour cells, which we corroborated by flow cytometric and metabolomic analyses. Pharmacological inhibition of oxidative phosphorylation dramatically attenuated metastatic seeding in the lungs, which demonstrates the functional importance of oxidative phosphorylation in metastasis and highlights its potential as a therapeutic target to prevent metastatic spread in patients with breast cancer.


Breast Neoplasms/genetics , Breast Neoplasms/pathology , Transcriptome , Animals , Breast Neoplasms/metabolism , Energy Metabolism , Female , Humans , Mice, Inbred NOD , Mice, SCID , Mitochondria/metabolism , Neoplasm Metastasis , Oxidative Phosphorylation , Sequence Analysis, RNA , Single-Cell Analysis , Transcription, Genetic
10.
Dev Cell ; 52(5): 591-604.e6, 2020 03 09.
Article En | MEDLINE | ID: mdl-32084360

Although autophagy is being pursued as a therapeutic target in clinical oncology trials, its effects on metastasis, the principal cause of cancer mortality, remain unclear. Here, we utilize mammary cancer models to temporally delete essential autophagy regulators during carcinoma progression. Though genetic ablation of autophagy strongly attenuates primary mammary tumor growth, impaired autophagy promotes spontaneous metastasis and enables the outgrowth of disseminated tumor cells into overt macro-metastases. Transcriptomic analysis reveals that autophagy deficiency elicits a subpopulation of otherwise luminal tumor cells exhibiting basal differentiation traits, which is reversed upon preventing accumulation of the autophagy cargo receptor, Neighbor to BRCA1 (NBR1). Furthermore, pharmacological and genetic induction of autophagy suppresses pro-metastatic differentiation and metastatic outgrowth. Analysis of human breast cancer data reveal that autophagy gene expression inversely correlates with pro-metastatic differentiation signatures and predicts overall and distant metastasis-free survival. Overall, these findings highlight autophagy-dependent control of NBR1 as a key determinant of metastatic progression.


Autophagy , Intracellular Signaling Peptides and Proteins/metabolism , Mammary Neoplasms, Experimental/metabolism , Animals , Cells, Cultured , Female , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , MCF-7 Cells , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Transcriptome
11.
Nat Rev Cancer ; 20(3): 174-186, 2020 03.
Article En | MEDLINE | ID: mdl-31980749

Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit. These include limitations in our understanding of the origin of CAFs and heterogeneity in CAF function, with it being desirable to retain some antitumorigenic functions. On the basis of a meeting of experts in the field of CAF biology, we summarize in this Consensus Statement our current knowledge and present a framework for advancing our understanding of this critical cell type within the tumour microenvironment.


Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Neoplasms/etiology , Neoplasms/pathology , Tumor Microenvironment , Animals , Biomarkers , Cancer-Associated Fibroblasts/drug effects , Cell Plasticity , Clinical Trials as Topic , Disease Susceptibility , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction , Stromal Cells/drug effects , Stromal Cells/metabolism , Stromal Cells/pathology , Treatment Outcome
12.
Life Sci Alliance ; 2(6)2019 12.
Article En | MEDLINE | ID: mdl-31727800

Metastasis, the main cause of cancer-related death, has traditionally been viewed as a late-occurring process during cancer progression. Using the MMTV-PyMT luminal B breast cancer model, we demonstrate that the lung metastatic niche is established early during tumorigenesis. We found that matrix metalloproteinase 9 (MMP9) is an important component of the metastatic niche early in tumorigenesis and promotes circulating tumor cells to colonize the lungs. Blocking active MMP9, using a monoclonal antibody specific to the active form of gelatinases, inhibited endogenous and experimental lung metastases in the MMTV-PyMT model. Mechanistically, inhibiting MMP9 attenuated migration, invasion, and colony formation and promoted CD8+ T cell infiltration and activation. Interestingly, primary tumor burden was unaffected, suggesting that inhibiting active MMP9 is primarily effective during the early metastatic cascade. These findings suggest that the early metastatic circuit can be disrupted by inhibiting active MMP9 and warrant further studies of MMP9-targeted anti-metastatic breast cancer therapy.


Breast Neoplasms/enzymology , Mammary Neoplasms, Experimental/enzymology , Matrix Metalloproteinase 9/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Carcinogenesis , Cell Line, Tumor , Female , HEK293 Cells , Humans , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Matrix Metalloproteinase 9/immunology , Matrix Metalloproteinase Inhibitors/pharmacology , Mice , Mice, Inbred Strains , Neoplasm Invasiveness , Neoplasm Metastasis
13.
Proc Natl Acad Sci U S A ; 116(43): 21704-21714, 2019 10 22.
Article En | MEDLINE | ID: mdl-31591235

Metastatic behavior varies significantly among breast cancers. Mechanisms explaining why the majority of breast cancer patients never develop metastatic outgrowth are largely lacking but could underlie the development of novel immunotherapeutic target molecules. Here we show interplay between nonmetastatic primary breast cancer and innate immune response, acting together to control metastatic progression. The primary tumor systemically recruits IFNγ-producing immune effector monocytes to the lung. IFNγ up-regulates Tmem173/STING in neutrophils and enhances their killing capacity. The immune effector monocytes and tumoricidal neutrophils target disseminated tumor cells in the lungs, preventing metastatic outgrowth. Importantly, our findings could underlie the development of immunotherapeutic target molecules that augment the function of immune effector monocytes and neutrophils.


Cytotoxicity, Immunologic/immunology , Mammary Neoplasms, Animal/pathology , Monocytes/immunology , Neutrophils/immunology , Animals , Cell Line, Tumor , Female , Immunity, Innate/immunology , Immunotherapy/methods , Interferon-gamma/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis/immunology , Neoplasm Metastasis/prevention & control , Tumor Microenvironment/immunology
14.
Nat Methods ; 16(7): 619-626, 2019 07.
Article En | MEDLINE | ID: mdl-31209384

Sample multiplexing facilitates scRNA-seq by reducing costs and identifying artifacts such as cell doublets. However, universal and scalable sample barcoding strategies have not been described. We therefore developed MULTI-seq: multiplexing using lipid-tagged indices for single-cell and single-nucleus RNA sequencing. MULTI-seq reagents can barcode any cell type or nucleus from any species with an accessible plasma membrane. The method involves minimal sample processing, thereby preserving cell viability and endogenous gene expression patterns. When cells are classified into sample groups using MULTI-seq barcode abundances, data quality is improved through doublet identification and recovery of cells with low RNA content that would otherwise be discarded by standard quality-control workflows. We use MULTI-seq to track the dynamics of T-cell activation, perform a 96-plex perturbation experiment with primary human mammary epithelial cells and multiplex cryopreserved tumors and metastatic sites isolated from a patient-derived xenograft mouse model of triple-negative breast cancer.


Lipids/chemistry , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Base Sequence , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans
15.
Nat Cell Biol ; 20(12): 1349-1360, 2018 12.
Article En | MEDLINE | ID: mdl-30482943

Tumours comprise a heterogeneous collection of cells with distinct genetic and phenotypic properties that can differentially promote progression, metastasis and drug resistance. Emerging single-cell technologies provide a new opportunity to profile individual cells within tumours and investigate what roles they play in these processes. This Review discusses key technological considerations for single-cell studies in cancer, new findings using single-cell technologies and critical open questions for future applications.


Biomarkers, Tumor/genetics , Genetic Heterogeneity , Neoplasms/genetics , Single-Cell Analysis/methods , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Metastasis , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Tumor Microenvironment/genetics
16.
Genes Dev ; 32(19-20): 1267-1284, 2018 10 01.
Article En | MEDLINE | ID: mdl-30275043

The presence of inflammatory immune cells in human tumors raises a fundamental question in oncology: How do cancer cells avoid the destruction by immune attack? In principle, tumor development can be controlled by cytotoxic innate and adaptive immune cells; however, as the tumor develops from neoplastic tissue to clinically detectable tumors, cancer cells evolve different mechanisms that mimic peripheral immune tolerance in order to avoid tumoricidal attack. Here, we provide an update of recent accomplishments, unifying concepts, and future challenges to study tumor-associated immune cells, with an emphasis on metastatic carcinomas.


Neoplasm Metastasis/immunology , Neoplasms/immunology , B-Lymphocytes/immunology , Carcinoma/immunology , Carcinoma/secondary , Dendritic Cells/immunology , Disease Progression , Humans , Immunologic Surveillance , Inflammation/immunology , Killer Cells, Natural/immunology , Macrophages/immunology , Neutrophils/immunology , T-Lymphocytes/immunology
17.
Cancer Cell ; 34(4): 561-578.e6, 2018 10 08.
Article En | MEDLINE | ID: mdl-30300579

Complement is a critical component of humoral immunity implicated in cancer development; however, its biological contributions to tumorigenesis remain poorly understood. Using the K14-HPV16 transgenic mouse model of squamous carcinogenesis, we report that urokinase (uPA)+ macrophages regulate C3-independent release of C5a during premalignant progression, which in turn regulates protumorigenic properties of C5aR1+ mast cells and macrophages, including suppression of CD8+ T cell cytotoxicity. Therapeutic inhibition of C5aR1 via the peptide antagonist PMX-53 improved efficacy of paclitaxel chemotherapy associated with increased presence and cytotoxic properties of CXCR3+ effector memory CD8+ T cells in carcinomas, dependent on both macrophage transcriptional programming and IFNγ. Together, these data identify C5aR1-dependent signaling as an important immunomodulatory program in neoplastic tissue tractable for combinatorial cancer immunotherapy.


Carcinogenesis/drug effects , Complement C5a/drug effects , Drug Therapy , Receptor, Anaphylatoxin C5a/drug effects , Animals , CD8-Positive T-Lymphocytes/drug effects , Carcinoma, Squamous Cell/drug therapy , Disease Models, Animal , Drug Therapy/methods , Humans , Macrophages/drug effects , Macrophages/physiology , Mice , Signal Transduction/drug effects
18.
Nat Commun ; 9(1): 2028, 2018 05 23.
Article En | MEDLINE | ID: mdl-29795293

Breast cancer arises from breast epithelial cells that acquire genetic alterations leading to subsequent loss of tissue homeostasis. Several distinct epithelial subpopulations have been proposed, but complete understanding of the spectrum of heterogeneity and differentiation hierarchy in the human breast remains elusive. Here, we use single-cell mRNA sequencing (scRNAseq) to profile the transcriptomes of 25,790 primary human breast epithelial cells isolated from reduction mammoplasties of seven individuals. Unbiased clustering analysis reveals the existence of three distinct epithelial cell populations, one basal and two luminal cell types, which we identify as secretory L1- and hormone-responsive L2-type cells. Pseudotemporal reconstruction of differentiation trajectories produces one continuous lineage hierarchy that closely connects the basal lineage to the two differentiated luminal branches. Our comprehensive cell atlas provides insights into the cellular blueprint of the human breast epithelium and will form the foundation to understand how the system goes awry during breast cancer.


Breast Neoplasms/genetics , Breast/cytology , Epithelial Cells/physiology , Gene Expression Profiling/methods , Transcriptome/genetics , Adult , Biomarkers, Tumor/genetics , Breast/pathology , Breast Neoplasms/pathology , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cluster Analysis , Female , Humans , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
19.
Oncotarget ; 9(13): 10945-10961, 2018 Feb 16.
Article En | MEDLINE | ID: mdl-29541388

Tumor endothelial cells (TEC) play an indispensible role in tumor growth and metastasis although much of the detailed mechanism still remains elusive. In this study we characterized and compared the global gene expression profiles of TECs and control ECs isolated from human breast cancerous tissues and reduction mammoplasty tissues respectively by single cell RNA sequencing (scRNA-seq). Based on the qualified scRNA-seq libraries that we made, we found that 1302 genes were differentially expressed between these two EC phenotypes. Both principal component analysis (PCA) and heat map-based hierarchical clustering separated the cancerous versus control ECs as two distinctive clusters, and MetaCore disease biomarker analysis indicated that these differentially expressed genes are highly correlated with breast neoplasm diseases. Gene Set Enrichment Analysis software (GSEA) enriched these genes to extracellular matrix (ECM) signal pathways and highlighted 127 ECM-associated genes. External validation verified some of these ECM-associated genes are not only generally overexpressed in various cancer tissues but also specifically overexpressed in colorectal cancer ECs and lymphoma ECs. In conclusion, our data demonstrated that ECM-associated genes play pivotal roles in breast cancer EC biology and some of them could serve as potential TEC biomarkers for various cancers.

20.
Genes Dev ; 32(3-4): 244-257, 2018 02 01.
Article En | MEDLINE | ID: mdl-29483153

The discoidin domain receptor 1 (DDR1) is overexpressed in breast carcinoma cells. Low DDR1 expression is associated with worse relapse-free survival, reflecting its controversial role in cancer progression. We detected DDR1 on luminal cells but not on myoepithelial cells of DDR1+/+ mice. We found that DDR1 loss compromises cell adhesion, consistent with data that older DDR1-/- mammary glands had more basal/myoepithelial cells. Basal cells isolated from older mice exerted higher traction forces than the luminal cells, in agreement with increased mammary branches observed in older DDR1-/- mice and higher branching by their isolated organoids. When we crossed DDR1-/- mice with MMTV-PyMT mice, the PyMT/DDR1-/- mammary tumors grew faster and had increased epithelial tension and matricellular fibrosis with a more basal phenotype and increased lung metastases. DDR1 deletion induced basal differentiation of CD90+CD24+ cancer cells, and the increase in basal cells correlated with tumor cell mitoses. K14+ basal cells, including K8+K14+ cells, were increased adjacent to necrotic fields. These data suggest that the absence of DDR1 provides a growth and adhesion advantage that favors the expansion of basal cells, potentiates fibrosis, and enhances necrosis/hypoxia and basal differentiation of transformed cells to increase their aggression and metastatic potential.


Discoidin Domain Receptor 1/genetics , Mammary Neoplasms, Experimental/pathology , Animals , Breast Neoplasms/metabolism , Cell Hypoxia , Discoidin Domain Receptor 1/metabolism , Disease-Free Survival , Epithelial Cells/metabolism , Female , Fibrosis , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/genetics , Mice
...