Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Transl Med ; 21(1): 690, 2023 10 16.
Article En | MEDLINE | ID: mdl-37840136

BACKGROUND: Dilated cardiomyopathy (DCM) is a severe, non-ischemic heart disease which ultimately results in heart failure (HF). Decades of research on DCM have revealed diverse aetiologies. Among them, familial DCM is the major form of DCM, with pathogenic variants in LMNA being the second most common form of autosomal dominant DCM. LMNA DCM is a multifactorial and complex disease with no specific treatment thus far. Many studies have demonstrated that perturbing candidates related to various dysregulated pathways ameliorate LMNA DCM. However, it is unknown whether these candidates could serve as potential therapeutic targets especially in long term efficacy. METHODS: We evaluated 14 potential candidates including Lmna gene products (Lamin A and Lamin C), key signaling pathways (Tgfß/Smad, mTor and Fgf/Mapk), calcium handling, proliferation regulators and modifiers of LINC complex function in a cardiac specific Lmna DCM model. Positive candidates for improved cardiac function were further assessed by survival analysis. Suppressive roles and mechanisms of these candidates in ameliorating Lmna DCM were dissected by comparing marker gene expression, Tgfß signaling pathway activation, fibrosis, inflammation, proliferation and DNA damage. Furthermore, transcriptome profiling compared the differences between Lamin A and Lamin C treatment. RESULTS: Cardiac function was restored by several positive candidates (Smad3, Yy1, Bmp7, Ctgf, aYAP1, Sun1, Lamin A, and Lamin C), which significantly correlated with suppression of HF/fibrosis marker expression and cardiac fibrosis in Lmna DCM. Lamin C or Sun1 shRNA administration achieved consistent, prolonged survival which highly correlated with reduced heart inflammation and DNA damage. Importantly, Lamin A treatment improved but could not reproduce long term survival, and Lamin A administration to healthy hearts itself induced DCM. Mechanistically, we identified this lapse as caused by a dose-dependent toxicity of Lamin A, which was independent from its maturation. CONCLUSIONS: In vivo candidate evaluation revealed that supplementation of Lamin C or knockdown of Sun1 significantly suppressed Lmna DCM and achieve prolonged survival. Conversely, Lamin A supplementation did not rescue long term survival and may impart detrimental cardiotoxicity risk. This study highlights a potential of advancing Lamin C and Sun1 as therapeutic targets for the treatment of LMNA DCM.


Cardiomyopathies , Cardiomyopathy, Dilated , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Lamin Type A/genetics , Lamin Type A/metabolism , Fibrosis , Inflammation/complications , Transforming Growth Factor beta , Mutation
2.
Hum Mol Genet ; 32(2): 177-191, 2023 01 06.
Article En | MEDLINE | ID: mdl-35925868

Mutations in LMNA, the gene encoding A-type lamins, cause laminopathies-diseases of striated muscle and other tissues. The aetiology of laminopathies has been attributed to perturbation of chromatin organization or structural weakening of the nuclear envelope (NE) such that the nucleus becomes more prone to mechanical damage. The latter model requires a conduit for force transmission to the nucleus. NE-associated Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes are one such pathway. Using clustered regularly interspaced short palindromic repeats to disrupt the Nesprin-1 KASH (Klarsicht, ANC-1, Syne Homology) domain, we identified this LINC complex protein as the predominant NE anchor for microtubule cytoskeleton components, including nucleation activities and motor complexes, in mouse cardiomyocytes. Loss of Nesprin-1 LINC complexes resulted in loss of microtubule cytoskeleton proteins at the nucleus and changes in nuclear morphology and positioning in striated muscle cells, but with no overt physiological defects. Disrupting the KASH domain of Nesprin-1 suppresses Lmna-linked cardiac pathology, likely by reducing microtubule cytoskeleton activities at the nucleus. Nesprin-1 LINC complexes thus represent a potential therapeutic target for striated muscle laminopathies.


Laminopathies , Muscle, Striated , Animals , Mice , Microtubule Proteins/metabolism , Nuclear Proteins/metabolism , Membrane Proteins/genetics , Cytoskeleton/genetics , Cytoskeleton/metabolism , Nuclear Matrix/genetics , Microtubules/metabolism , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Intermediate Filament Proteins/metabolism , Muscle, Striated/metabolism , Laminopathies/metabolism
3.
Nat Commun ; 12(1): 4722, 2021 08 05.
Article En | MEDLINE | ID: mdl-34354059

Mutations in the LaminA gene are a common cause of monogenic dilated cardiomyopathy. Here we show that mice with a cardiomyocyte-specific Lmna deletion develop cardiac failure and die within 3-4 weeks after inducing the mutation. When the same Lmna mutations are induced in mice genetically deficient in the LINC complex protein SUN1, life is extended to more than one year. Disruption of SUN1's function is also accomplished by transducing and expressing a dominant-negative SUN1 miniprotein in Lmna deficient cardiomyocytes, using the cardiotrophic Adeno Associated Viral Vector 9. The SUN1 miniprotein disrupts binding between the endogenous LINC complex SUN and KASH domains, displacing the cardiomyocyte KASH complexes from the nuclear periphery, resulting in at least a fivefold extension in lifespan. Cardiomyocyte-specific expression of the SUN1 miniprotein prevents cardiomyopathy progression, potentially avoiding the necessity of developing a specific therapeutic tailored to treating each different LMNA cardiomyopathy-inducing mutation of which there are more than 450.


Cardiomyopathy, Dilated/genetics , Lamin Type A/genetics , Lamin Type A/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Animals , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/physiopathology , Dependovirus/genetics , Female , Humans , Lamin Type A/deficiency , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/deficiency , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Transduction, Genetic
4.
Curr Protoc Cell Biol ; 84(1): e96, 2019 09.
Article En | MEDLINE | ID: mdl-31483108

Protein-protein interactions (PPIs) add an essential layer of complexity to the information encoded by the genome. Modulation of such interactions is a key feature of most, if not all, cellular activities and allows cells to respond rapidly to both internal and external signals and stimuli. In this respect, the development of the BioID assay to interrogate PPIs within a cellular context represents an important adjunct to the range of tools currently at researchers' disposal. To address some of its current limitations, we devised 2C-BioID, in which biotin ligase and the protein of interest remain as separate entities until induced to associate. This is accomplished using the well-established FKBP-FRB dimerization system (based on the rapamycin-induced binding of FK506 binding protein and FKBP12-rapamycin binding domain.). The design of 2C-BioID ensures that biotin ligase association with the protein of interest occurs only after addition of the rapamycin analogue AP21967. As such, 2C-BioID alleviates potential targeting issues and improves the ability to exclude false positives, thereby refining the specificity of BioID-generated interactomes. © 2019 by John Wiley & Sons, Inc.


Dimerization , Protein Binding , Protein Interaction Mapping/methods , Tacrolimus Binding Protein 1A/metabolism , Biotinylation , Carbon-Nitrogen Ligases/metabolism , Escherichia coli Proteins/metabolism , Genome , Humans , Repressor Proteins/metabolism , Sirolimus/analogs & derivatives , Sirolimus/metabolism , Tacrolimus Binding Protein 1A/genetics
5.
PLoS One ; 7(2): e30838, 2012.
Article En | MEDLINE | ID: mdl-22312433

Cognitive decline during aging is correlated with a continuous loss of cells within the brain and especially within the hippocampus, which could be regenerated by adult neurogenesis. Here we show that genetic ablation of NF-κB resulted in severe defects in the neurogenic region (dentate gyrus) of the hippocampus. Despite increased stem cell proliferation, axogenesis, synaptogenesis and neuroprotection were hampered, leading to disruption of the mossy fiber pathway and to atrophy of the dentate gyrus during aging. Here, NF-κB controls the transcription of FOXO1 and PKA, regulating axogenesis. Structural defects culminated in behavioral impairments in pattern separation. Re-activation of NF-κB resulted in integration of newborn neurons, finally to regeneration of the dentate gyrus, accompanied by a complete recovery of structural and behavioral defects. These data identify NF-κB as a crucial regulator of dentate gyrus tissue homeostasis suggesting NF-κB to be a therapeutic target for treating cognitive and mood disorders.


Dentate Gyrus/cytology , Dentate Gyrus/physiology , Homeostasis , NF-kappa B/metabolism , Nerve Net/cytology , Nerve Net/physiology , Regeneration , Animals , Apoptosis , Cyclic AMP-Dependent Protein Kinases/metabolism , Dentate Gyrus/metabolism , Forkhead Box Protein O1 , Forkhead Transcription Factors/metabolism , Gene Deletion , Gene Expression Regulation , Inflammation/metabolism , Inflammation/pathology , Inflammation/physiopathology , Male , Mice , Mossy Fibers, Hippocampal/metabolism , Mossy Fibers, Hippocampal/physiology , NF-kappa B/deficiency , NF-kappa B/genetics , Nerve Net/metabolism , Neurogenesis , Signal Transduction , Spatial Behavior/physiology
6.
J Biol Chem ; 283(48): 33784-92, 2008 Nov 28.
Article En | MEDLINE | ID: mdl-18842593

The development of polarized hippocampal neurons with a single axon and multiple dendrites depends on the activity of phosphoinositide 3-kinase (PI3K) and the GTPase Rap1B. Here we show that PI3K regulates axon specification and elongation through the GTPase Rheb and its target mammalian target of rapamycin (mTOR). Overexpression of Rheb induces the formation of multiple axons, whereas its suppression by RNA interference blocks axon specification. mTOR is a central regulator of translation that phosphorylates eIF4E-binding proteins like 4E-BP1. Axon formation was suppressed by inhibition of mTOR and expression of mTOR-insensitive 4E-BP1 mutants. Inhibition of PI3K or mTOR reduced the level of Rap1B, which acts downstream of Rheb and mTOR. The ubiquitin E3 ligase Smurf2 mediates the restriction of Rap1B by initiating its degradation. Suppression of Smruf2 by RNA interference is able to compensate the loss of Rheb. These results indicate that the mTOR pathway is required to counteract the Smurf2-initiated degradation of Rap1B during the establishment of neuronal polarity.


Axons/metabolism , Carrier Proteins/metabolism , Cell Polarity/physiology , Monomeric GTP-Binding Proteins/metabolism , Neuropeptides/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , rap GTP-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Carrier Proteins/genetics , Cell Cycle Proteins , Cell Line , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factors , Humans , Intracellular Signaling Peptides and Proteins , Mice , Monomeric GTP-Binding Proteins/genetics , Mutation , Neuropeptides/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation/physiology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Biosynthesis/physiology , RNA Interference , Ras Homolog Enriched in Brain Protein , Rats , TOR Serine-Threonine Kinases , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , rap GTP-Binding Proteins/genetics
7.
BMC Genomics ; 7: 21, 2006 Feb 09.
Article En | MEDLINE | ID: mdl-16469103

BACKGROUND: The knowledge about complete bacterial genome sequences opens the way to reconstruct the qualitative topology and global connectivity of transcriptional regulatory networks. Since iron is essential for a variety of cellular processes but also poses problems in biological systems due to its high toxicity, bacteria have evolved complex transcriptional regulatory networks to achieve an effective iron homeostasis. Here, we apply a combination of transcriptomics, bioinformatics, in vitro assays, and comparative genomics to decipher the regulatory network of the iron-dependent transcriptional regulator DtxR of Corynebacterium glutamicum. RESULTS: A deletion of the dtxR gene of C. glutamicum ATCC 13032 led to the mutant strain C. glutamicum IB2103 that was able to grow in minimal medium only under low-iron conditions. By performing genome-wide DNA microarray hybridizations, differentially expressed genes involved in iron metabolism of C. glutamicum were detected in the dtxR mutant. Bioinformatics analysis of the genome sequence identified a common 19-bp motif within the upstream region of 31 genes, whose differential expression in C. glutamicum IB2103 was verified by real-time reverse transcription PCR. Binding of a His-tagged DtxR protein to oligonucleotides containing the 19-bp motifs was demonstrated in vitro by DNA band shift assays. At least 64 genes encoding a variety of physiological functions in iron transport and utilization, in central carbohydrate metabolism and in transcriptional regulation are controlled directly by the DtxR protein. A comparison with the bioinformatically predicted networks of C. efficiens, C. diphtheriae and C. jeikeium identified evolutionary conserved elements of the DtxR network. CONCLUSION: This work adds considerably to our currrent understanding of the transcriptional regulatory network of C. glutamicum genes that are controlled by DtxR. The DtxR protein has a major role in controlling the expression of genes involved in iron metabolism and exerts a dual regulatory function as repressor of genes participating in iron uptake and utilization and as activator of genes responsible for iron storage and DNA protection. The data suggest that the DtxR protein acts as global regulator by controlling the expression of other regulatory proteins that might take care of an iron-dependent regulation of a broader transcriptional network of C. glutamicum genes.


Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Iron/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Base Sequence , Binding Sites/genetics , Computational Biology , Corynebacterium/genetics , Corynebacterium/metabolism , Corynebacterium diphtheriae/genetics , Corynebacterium diphtheriae/metabolism , DNA Primers/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Deletion , Gene Expression Profiling , Genes, Bacterial , Genomics , Oligonucleotide Array Sequence Analysis , Phenotype , Promoter Regions, Genetic , Regulon , Repressor Proteins/genetics , Repressor Proteins/metabolism , Species Specificity , Trans-Activators/genetics , Trans-Activators/metabolism
...