Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Neurosci Res ; 98(10): 1933-1952, 2020 10.
Article En | MEDLINE | ID: mdl-32588471

Charcot-Marie-Tooth disease 1 A (CMT1A) is caused by an intrachromosomal duplication of the gene encoding for PMP22 leading to peripheral nerve dysmyelination, axonal loss, and progressive muscle weakness. No therapy is available. PXT3003 is a low-dose combination of baclofen, naltrexone, and sorbitol which has been shown to improve disease symptoms in Pmp22 transgenic rats, a bona fide model of CMT1A disease. However, the superiority of PXT3003 over its single components or dual combinations have not been tested. Here, we show that in a dorsal root ganglion (DRG) co-culture system derived from transgenic rats, PXT3003 induced myelination when compared to its single and dual components. Applying a clinically relevant ("translational") study design in adult male CMT1A rats for 3 months, PXT3003, but not its dual components, resulted in improved performance in behavioral motor and sensory endpoints when compared to placebo. Unexpectedly, we observed only a marginally increased number of myelinated axons in nerves from PXT3003-treated CMT1A rats. However, in electrophysiology, motor latencies correlated with increased grip strength indicating a possible effect of PXT3003 on neuromuscular junctions (NMJs) and muscle fiber pathology. Indeed, PXT3003-treated CMT1A rats displayed an increased perimeter of individual NMJs and a larger number of functional NMJs. Moreover, muscles of PXT3003 CMT1A rats displayed less neurogenic atrophy and a shift toward fast contracting muscle fibers. We suggest that ameliorated motor function in PXT3003-treated CMT1A rats result from restored NMJ function and muscle innervation, independent from myelination.


Baclofen/administration & dosage , Charcot-Marie-Tooth Disease/drug therapy , Demyelinating Diseases/drug therapy , Naltrexone/administration & dosage , Neuromuscular Junction/drug effects , Sorbitol/administration & dosage , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Coculture Techniques , Demyelinating Diseases/genetics , Demyelinating Diseases/physiopathology , Drug Synergism , Drug Therapy, Combination , Female , Male , Myelin Proteins/genetics , Neural Conduction/drug effects , Neural Conduction/physiology , Neuromuscular Junction/physiology , Rats , Rats, Sprague-Dawley , Rats, Transgenic
2.
PLoS One ; 14(1): e0209752, 2019.
Article En | MEDLINE | ID: mdl-30650121

The most common type of Charcot-Marie-Tooth disease is caused by a duplication of PMP22 leading to dysmyelination, axonal loss and progressive muscle weakness (CMT1A). Currently, no approved therapy is available for CMT1A patients. A novel polytherapeutic proof-of-principle approach using PXT3003, a low-dose combination of baclofen, naltrexone and sorbitol, slowed disease progression after long-term dosing in adult Pmp22 transgenic rats, a known animal model of CMT1A. Here, we report an early postnatal, short-term treatment with PXT3003 in CMT1A rats that delays disease onset into adulthood. CMT1A rats were treated from postnatal day 6 to 18 with PXT3003. Behavioural, electrophysiological, histological and molecular analyses were performed until 12 weeks of age. Daily oral treatment for approximately 2 weeks ameliorated motor deficits of CMT1A rats reaching wildtype levels. Histologically, PXT3003 corrected the disturbed axon calibre distribution with a shift towards large motor axons. Despite dramatic clinical amelioration, only distal motor latencies were improved and correlated with phenotype performance. On the molecular level, PXT3003 reduced Pmp22 mRNA overexpression and improved the misbalanced downstream PI3K-AKT / MEK-ERK signalling pathway. The improved differentiation status of Schwann cells may have enabled better long-term axonal support function. We conclude that short-term treatment with PXT3003 during early development may partially prevent the clinical and molecular manifestations of CMT1A. Since PXT3003 has a strong safety profile and is currently undergoing a phase III trial in CMT1A patients, our results suggest that PXT3003 therapy may be a bona fide translatable therapy option for children and young adolescent patients suffering from CMT1A.


Baclofen/pharmacology , Charcot-Marie-Tooth Disease/drug therapy , Naltrexone/pharmacology , Sorbitol/pharmacology , Animals , Axons/metabolism , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Drug Combinations , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System/drug effects , Male , Muscle Weakness/metabolism , Myelin Proteins/drug effects , Myelin Proteins/genetics , Myelin Proteins/metabolism , Neural Conduction , Phosphatidylinositol 3-Kinases/metabolism , Proof of Concept Study , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Schwann Cells/drug effects , Signal Transduction/drug effects
...