Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Leukoc Biol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872374

RESUMEN

By providing innate immune modulatory stimuli, the early life immune system can be enhanced to increase resistance to infections. Activation of innate cell surface receptors called pattern recognition receptors (PRRs) by TLR ligands is one promising approach that can help to control infections as described for listeriosis and cryptosporidiosis. In this study, the effect of TLR2/TLR1 and TLR2/TLR6 agonists was compared when injected into neonatal mice. Surprisingly, the stimulation of TLR2/TLR6 led to the death of the neonatal mice which was not observed in adult mice. The TLR2/TLR6 agonist administration induced higher systemic and intestinal inflammation both in adult and neonatal mice when compared to TLR2/TLR1 agonist. The mortality of neonatal mice was IFN-γ dependent and involved the intestinal production of IL-22 and IL-17A. This study clearly demonstrates that targeting TLRs as new control strategy of neonatal infections has to be used with caution. Depending on its heterodimeric form, the TLR2 stimulation can induce adverse effects more or less severe relying on the age-related immune functions of the host.

2.
Microbes Infect ; 26(3): 105274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38081475

RESUMEN

Leptospira interrogans are pathogenic bacteria responsible for leptospirosis, a worldwide zoonosis. All vertebrates can be infected, and some species like humans are susceptible to the disease whereas rodents such as mice are resistant and become asymptomatic renal carriers. Leptospires are stealth bacteria that are known to escape several immune recognition pathways and resist killing mechanisms. We recently published that leptospires may survive intracellularly in and exit macrophages, avoiding xenophagy, a pathogen-targeting form of autophagy. Interestingly, the latter is one of the antimicrobial mechanisms often highjacked by bacteria to evade the host immune response. In this study we explored whether leptospires subvert the key molecular players of autophagy to facilitate infection. We showed in macrophages that leptospires triggered a specific accumulation of autophagy-adaptor p62 in puncta-like structures, without altering autophagic flux. We demonstrated that Leptospira-induced p62 accumulation is a passive mechanism depending on the leptospiral virulence factor LPS signaling via TLR4/TLR2. p62 is a central pleiotropic protein, also mediating cell stress and death, via the translocation of transcription factors. We demonstrated that Leptospira-driven accumulation of p62 induced the translocation of transcription factor NRF2, a key player in the anti-oxidant response. However, NRF2 translocation upon Leptospira infection did not result as expected in antioxydant response, but dampened the production of inflammatory mediators such as iNOS/NO, TNF and IL6. Overall, these findings highlight a novel passive bacterial mechanism linked to LPS and p62/NRF2 signaling that decreases inflammation and contributes to the stealthiness of leptospires.


Asunto(s)
Leptospira , Leptospirosis , Humanos , Ratones , Animales , Lipopolisacáridos , Factor 2 Relacionado con NF-E2/metabolismo , Regulación hacia Arriba , Macrófagos/metabolismo , Inflamación , Autofagia
3.
J Biol Chem ; 300(1): 105506, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029965

RESUMEN

Endotoxins, also known as lipopolysaccharides (LPS), are essential components of cell walls of diderm bacteria such as Escherichia coli. LPS are microbe-associated molecular patterns that can activate pattern recognition receptors. While trying to investigate the interactions between proteins and host innate immunity, some studies using recombinant proteins expressed in E. coli reported interaction and activation of immune cells. Here, we set out to provide information on endotoxins that are highly toxic to humans and bind to numerous molecules, including recombinant proteins. We begin by outlining the history of the discovery of endotoxins, their receptors and the associated signaling pathways that confer extreme sensitivity to immune cells, acting alone or in synergy with other microbe-associated molecular patterns. We list the various places where endotoxins have been found. Additionally, we warn against the risk of data misinterpretation due to endotoxin contamination in recombinant proteins, which is difficult to estimate with the Limulus amebocyte lysate assay, and cannot be completely neutralized (e.g., treatment with polymyxin B or heating). We further illustrate our point with examples of recombinant heat-shock proteins and viral proteins from severe acute respiratory syndrome coronavirus 2, dengue and HIV, for which endotoxin contamination has eventually been shown to be responsible for the inflammatory roles previously ascribed. We also critically appraised studies on recombinant Leptospira proteins regarding their putative inflammatory roles. Finally, to avoid these issues, we propose alternatives to express recombinant proteins in nonmicrobial systems. Microbiologists wishing to undertake innate immunity studies with their favorite pathogens should be aware of these difficulties.


Asunto(s)
Inmunidad Innata , Leptospira , Lipopolisacáridos , Proteínas Recombinantes , Humanos , Escherichia coli/genética , Lipopolisacáridos/toxicidad , Proteínas Recombinantes/metabolismo , Leptospira/metabolismo
4.
J Immunol ; 210(4): 459-474, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36602965

RESUMEN

Leptospira interrogans are bacteria that can infect all vertebrates and are responsible for leptospirosis, a neglected zoonosis. Some hosts, such as humans, are susceptible to the disease, whereas mice are resistant and get chronically colonized. Although leptospires escape recognition by some immune receptors, they activate the NOD-like receptor pyrin 3-inflammasome and trigger IL-1ß secretion. Classically, IL-1ß secretion is associated with lytic inflammatory cell death called pyroptosis, resulting from cytosolic LPS binding to inflammatory caspases, such as caspase 11. Interestingly, we showed that L. interrogans and Leptospira biflexa do not trigger cell death in either murine, human, hamster, or bovine macrophages, escaping both pyroptosis and apoptosis. We showed, in murine cells, that the mild IL-1ß secretion induced by leptospires occurred through nonlytic caspase 8-dependent gasdermin D pore formation and not through activation of caspase 11/noncanonical inflammasome. Strikingly, we demonstrated a potent antagonistic effect of pathogenic L. interrogans and their atypical LPS on spontaneous and Escherichia coli LPS-induced cell death. Indeed, LPS of L. interrogans efficiently prevents caspase 11 dimerization and subsequent massive gasdermin D cleavage. Finally, we showed that pyroptosis escape by leptospires prevents massive IL-1ß release, and we consistently found no major role of IL-1R in controlling experimental leptospirosis in vivo. Overall, to our knowledge, our findings described a novel mechanism by which leptospires dampen inflammation, thus potentially contributing to their stealthiness.


Asunto(s)
Leptospira interrogans , Leptospirosis , Animales , Bovinos , Cricetinae , Humanos , Ratones , Caspasas/metabolismo , Gasderminas , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Leptospira interrogans/metabolismo , Leptospirosis/metabolismo , Leptospirosis/microbiología , Lipopolisacáridos , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Muerte Celular
6.
Front Cell Infect Microbiol ; 12: 932137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937697

RESUMEN

Leptospirosis is a zoonotic infectious disease affecting all vertebrates. It is caused by species of the genus Leptospira, among which are the highly pathogenic L. interrogans. Different mammals can be either resistant or susceptible to the disease which can present a large variety of symptoms. Humans are mostly asymptomatic after infection but can have in some cases symptoms varying from a flu-like syndrome to more severe forms such as Weil's disease, potentially leading to multiorgan failure and death. Similarly, cattle, pigs, and horses can suffer from acute forms of the disease, including morbidity, abortion, and uveitis. On the other hand, mice and rats are resistant to leptospirosis despite chronical colonization of the kidneys, excreting leptospires in urine and contributing to the transmission of the bacteria. To this date, the immune mechanisms that determine the severity of the infection and that confer susceptibility to leptospirosis remain enigmatic. To our interest, differential immune sensing of leptospires through the activation of or escape from pattern recognition receptors (PRRs) by microbe-associated molecular patterns (MAMPs) has recently been described. In this review, we will summarize these findings that suggest that in various hosts, leptospires differentially escape recognition by some Toll-like and NOD-like receptors, including TLR4, TLR5, and NOD1, although TLR2 and NLRP3 responses are conserved independently of the host. Overall, we hypothesize that these innate immune mechanisms could play a role in determining host susceptibility to leptospirosis and suggest a central, yet complex, role for TLR4.


Asunto(s)
Leptospira interrogans , Leptospira , Leptospirosis , Animales , Bovinos , Caballos , Humanos , Leptospirosis/microbiología , Mamíferos , Ratones , Ratones Endogámicos C57BL , Ratas , Receptores de Reconocimiento de Patrones , Porcinos , Receptor Toll-Like 4
7.
Front Immunol ; 13: 911778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812397

RESUMEN

Leptospira interrogans is a bacterial species responsible for leptospirosis, a neglected worldwide zoonosis. Mice and rats are resistant and can become asymptomatic carriers, whereas humans and some other mammals may develop severe forms of leptospirosis. Uncommon among spirochetes, leptospires contain lipopolysaccharide (LPS) in their outer membrane. LPS is highly immunogenic and forms the basis for a large number of serovars. Vaccination with inactivated leptospires elicits a protective immunity, restricted to serovars with related LPS. This protection that lasts in mice, is not long lasting in humans and requires annual boosts. Leptospires are stealth pathogens that evade the complement system and some pattern recognition receptors from the Toll-like (TLR) and Nod-Like families, therefore limiting antibacterial defense. In macrophages, leptospires totally escape recognition by human TLR4, and escape the TRIF arm of the mouse TLR4 pathway. However, very little is known about the recognition and processing of leptospires by dendritic cells (DCs), although they are crucial cells linking innate and adaptive immunity. Here we tested the activation of primary DCs derived from human monocytes (MO-DCs) and mouse bone marrow (BM-DCs) 24h after stimulation with saprophytic or different pathogenic virulent or avirulent L. interrogans. We measured by flow cytometry the expression of DC-SIGN, a lectin involved in T-cell activation, co-stimulation molecules and MHC-II markers, and pro- and anti-inflammatory cytokines by ELISA. We found that exposure to leptospires, live or heat-killed, activated dendritic cells. However, pathogenic L. interrogans, especially from the Icterohaemorraghiae Verdun strain, triggered less marker upregulation and less cytokine production than the saprophytic Leptospira biflexa. In addition, we showed a better activation with avirulent leptospires, when compared to the virulent parental strains in murine BM-DCs. We did not observe this difference in human MO-DCs, suggesting a role for TLR4 in DC stimulation. Accordingly, using BM-DCs from transgenic deficient mice, we showed that virulent Icterohaemorraghiae and Manilae serovars dampened DC activation, at least partly, through the TLR4 and TRIF pathways. This work shows a novel bacterial immune evasion mechanism to limit DC activation and further illustrates the role of the leptospiral LPS as a virulence factor.


Asunto(s)
Leptospirosis , Receptor Toll-Like 4 , Proteínas Adaptadoras del Transporte Vesicular , Animales , Células Dendríticas , Humanos , Lipopolisacáridos , Mamíferos , Ratones , Ratones Transgénicos
8.
Front Cell Infect Microbiol ; 12: 936931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899053

RESUMEN

Leptospira interrogans are pathogenic bacteria responsible for leptospirosis, a zoonosis impacting 1 million people per year worldwide. Leptospires can infect all vertebrates, but not all hosts develop similar symptoms. Human and cattle may suffer from mild to acute illnesses and are therefore considered as sensitive to leptospirosis. In contrast, mice and rats remain asymptomatic upon infection, although they get chronically colonized in their kidneys. Upon infection, leptospires are stealth pathogens that partially escape the recognition by the host innate immune system. Although leptospires are mainly extracellular bacteria, it was suggested that they could also replicate within macrophages. However, contradictory data in the current literature led us to reevaluate these findings. Using a gentamicin-protection assay coupled to high-content (HC) microscopy, we observed that leptospires were internalized in vivo upon peritoneal infection of C57BL/6J mice. Additionally, three different serotypes of pathogenic L. interrogans and the saprophytic L. biflexa actively infected both human (PMA differentiated) THP1 and mouse RAW264.7 macrophage cell lines. Next, we assessed the intracellular fate of leptospires using bioluminescent strains, and we observed a drastic reduction in the leptospiral intracellular load between 3 h and 6 h post-infection, suggesting that leptospires do not replicate within these cells. Surprisingly, the classical macrophage microbicidal mechanisms (phagocytosis, autophagy, TLR-mediated ROS, and RNS production) were not responsible for the observed decrease. Finally, we demonstrated that the reduction in the intracellular load was associated with an increase of the bacteria in the supernatant, suggesting that leptospires exit both human and murine macrophages. Overall, our study reevaluated the intracellular fate of leptospires and favors an active entrance followed by a rapid exit, suggesting that leptospires do not have an intracellular lifestyle in macrophages.


Asunto(s)
Leptospira interrogans , Leptospira , Leptospirosis , Animales , Bovinos , Humanos , Leptospirosis/microbiología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratas
9.
Microbiol Spectr ; 10(3): e0277521, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35446113

RESUMEN

Analysis of Leptospira dissemination and colonization of sex organs in rodents is of significant value as it queries the possibility of mammal-to-mammal venereal transmission. The aim of our study was to evaluate the presence and viability of Leptospira interrogans in testes of mice using models of infection that we previously developed. Using sublethal and lethal doses of bioluminescent strains of L. interrogans serovars Manilae and Copenhageni, we visualized the presence of leptospires in testes of C57BL/6 mice as early as 30 min and up to days 3-4 postinfection. This was confirmed by qPCR for the Copenhageni serovar after lethal infection of C3H/HeJ mice. In this model, no histopathological changes were noticed in testis. We further studied persistence of serovar Copenhageni in C3H/HeJ testes after lethal and sublethal infection, with different doses of leptospires. No viable leptospires were recovered from testes of lethally infected mice. However, we found live culturable Leptospira in testes of 19/19 (100%) sublethally infected mice at the acute phase but not at 15 days postinfection, which corresponds to the chronic phase of renal colonization. The data suggest that colonization of testes with live and potentially infectious leptospires is transient and limited to the spirochetemic phase of infection. Further studies are necessary to evaluate if presence of Leptospira in testes of mice leads to excretion in semen and to venereal transmission to female mice. IMPORTANCE Analysis of venereal transmission of Leptospira is important to determine if direct animal to animal transmission occurs, which could impact measures to prevent and treat leptospirosis. The goal of this study was to determine if live Leptospira colonize mouse testes. We found that colonization of mouse testes with live Leptospira was transient and limited to the acute spirochetemic phase of infection and that transient colonization of the testes was insufficient to cause histopathological changes.


Asunto(s)
Leptospira interrogans , Leptospira , Leptospirosis , Animales , Femenino , Leptospira interrogans/genética , Leptospirosis/veterinaria , Masculino , Mamíferos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Testículo/patología
10.
PLoS Negl Trop Dis ; 15(3): e0008970, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33705392

RESUMEN

Leptospira interrogans is a pathogenic spirochete responsible for leptospirosis, a neglected, zoonotic reemerging disease. Humans are sensitive hosts and may develop severe disease. Some animal species, such as rats and mice can become asymptomatic renal carriers. More than 350 leptospiral serovars have been identified, classified on the basis of the antibody response directed against the lipopolysaccharide (LPS). Similarly to whole inactivated bacteria used as human vaccines, this response is believed to confer only short-term, serogroup-specific protection. The immune response of hosts against leptospires has not been thoroughly studied, which complicates the testing of vaccine candidates. In this work, we studied the immunoglobulin (Ig) profiles in mice infected with L. interrogans over time to determine whether this humoral response confers long-term protection after homologous challenge six months post-infection. Groups of mice were injected intraperitoneally with 2×107 leptospires of one of three pathogenic serovars (Manilae, Copenhageni or Icterohaemorrhagiae), attenuated mutants or heat-killed bacteria. Leptospira-specific immunoglobulin (IgA, IgM, IgG and 4 subclasses) produced in the first weeks up to 6 months post-infection were measured by ELISA. Strikingly, we found sustained high levels of IgM in mice infected with the pathogenic Manilae and Copenhageni strains, both colonizing the kidney. In contrast, the Icterohaemorrhagiae strain did not lead to kidney colonization, even at high dose, and triggered a classical IgM response that peaked at day 8 post-infection and disappeared. The virulent Manilae and Copenhageni serovars elicited high levels and similar profiles of IgG subclasses in contrast to Icterohaemorrhagiae strains that stimulated weaker antibody responses. Inactivated heat-killed Manilae strains elicited very low responses. However, all mice pre-injected with leptospires challenged with high doses of homologous bacteria did not develop acute leptospirosis, and all antibody responses were boosted after challenge. Furthermore, we showed that 2 months post-challenge, mice pre-infected with the attenuated M895 Manilae LPS mutant or heat-killed bacterin were completely protected against renal colonization. In conclusion, we observed a sustained IgM response potentially associated with chronic leptospiral renal infection. We also demonstrated in mice different profiles of protective and cross-reactive antibodies after L. interrogans infection, depending on the serovar and virulence of strains.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Leptospira interrogans/inmunología , Leptospirosis/inmunología , Leptospirosis/prevención & control , Animales , Carga Bacteriana/inmunología , Reacciones Cruzadas/inmunología , Femenino , Inmunoglobulina A/sangre , Riñón/microbiología , Leptospirosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Front Immunol ; 11: 571816, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123147

RESUMEN

The spirochetal bacteria Leptospira spp. are causative agents of leptospirosis, a globally neglected and reemerging zoonotic disease. Infection with these pathogens may lead to an acute and potentially fatal disease but also to chronic asymptomatic renal colonization. Both forms of disease demonstrate the ability of leptospires to evade the immune response of their hosts. In this review, we aim first to recapitulate the knowledge and explore the controversial data about the opsonization, recognition, intracellular survival, and killing of leptospires by scavenger cells, including platelets, neutrophils, macrophages, and dendritic cells. Second, we will summarize the known specificities of the recognition or escape of leptospire components (the so-called microbial-associated molecular patterns; MAMPs) by the pattern recognition receptors (PRRs) of the Toll-like and NOD-like families. These PRRs are expressed by phagocytes, and their stimulation by MAMPs triggers pro-inflammatory cytokine and chemokine production and bactericidal responses, such as antimicrobial peptide secretion and reactive oxygen species production. Finally, we will highlight recent studies suggesting that boosting or restoring phagocytic functions by treatments using agonists of the Toll-like or NOD receptors represents a novel prophylactic strategy and describe other potential therapeutic or vaccine strategies to combat leptospirosis.


Asunto(s)
Leptospira/fisiología , Leptospirosis/inmunología , Macrófagos/inmunología , Proteínas NLR/metabolismo , Neutrófilos/inmunología , Fagocitos/inmunología , Receptores Toll-Like/metabolismo , Animales , Humanos , Evasión Inmune , Inmunidad Innata , Fagocitosis
13.
PLoS Pathog ; 16(8): e1008639, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32790743

RESUMEN

Leptospirosis is a worldwide re-emerging zoonosis caused by pathogenic Leptospira spp. All vertebrate species can be infected; humans are sensitive hosts whereas other species, such as rodents, may become long-term renal carrier reservoirs. Upon infection, innate immune responses are initiated by recognition of Microbial Associated Molecular Patterns (MAMPs) by Pattern Recognition Receptors (PRRs). Among MAMPs, the lipopolysaccharide (LPS) is recognized by the Toll-Like-Receptor 4 (TLR4) and activates both the MyD88-dependent pathway at the plasma membrane and the TRIF-dependent pathway after TLR4 internalization. We previously showed that leptospiral LPS is not recognized by the human-TLR4, whereas it signals through mouse-TLR4 (mTLR4), which mediates mouse resistance to acute leptospirosis. However, although resistant, mice are known to be chronically infected by leptospires. Interestingly, the leptospiral LPS has low endotoxicity in mouse cells and is an agonist of TLR2, the sensor for bacterial lipoproteins. Here, we investigated the signaling properties of the leptospiral LPS in mouse macrophages. Using confocal microscopy and flow cytometry, we showed that the LPS of L. interrogans did not induce internalization of mTLR4, unlike the LPS of Escherichia coli. Consequently, the LPS failed to induce the production of the TRIF-dependent nitric oxide and RANTES, both important antimicrobial responses. Using shorter LPS and LPS devoid of TLR2 activity, we further found this mTLR4-TRIF escape to be dependent on both the co-purifying lipoproteins and the full-length O antigen. Furthermore, our data suggest that the O antigen could alter the binding of the leptospiral LPS to the co-receptor CD14 that is essential for TLR4-TRIF activation. Overall, we describe here a novel leptospiral immune escape mechanism from mouse macrophages and hypothesize that the LPS altered signaling could contribute to the stealthiness and chronicity of the leptospires in mice.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Leptospira/inmunología , Leptospirosis/inmunología , Lipopolisacáridos/metabolismo , Lipoproteínas/metabolismo , Antígenos O/metabolismo , Receptor Toll-Like 4/fisiología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Citocinas/metabolismo , Femenino , Leptospirosis/metabolismo , Leptospirosis/microbiología , Leptospirosis/patología , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Lipoproteínas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/fisiología , Antígenos O/genética , Transducción de Señal , Receptor Toll-Like 2/fisiología
14.
Front Immunol ; 11: 2007, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849665

RESUMEN

Leptospira (L.) interrogans are invasive bacteria responsible for leptospirosis, a worldwide zoonosis. They possess two periplasmic endoflagellae that allow their motility. L. interrogans are stealth pathogens that escape the innate immune recognition of the NOD-like receptors NOD1/2, and the human Toll-like receptor (TLR)4, which senses peptidoglycan and lipopolysaccharide (LPS), respectively. TLR5 is another receptor of bacterial cell wall components, recognizing flagellin subunits. To study the contribution of TLR5 in the host defense against leptospires, we infected WT and TLR5 deficient mice with pathogenic L. interrogans and tracked the infection by in vivo live imaging of bioluminescent bacteria or by qPCR. We did not identify any protective or inflammatory role of murine TLR5 for controlling pathogenic Leptospira. Likewise, subsequent in vitro experiments showed that infections with different live strains of L. interrogans and L. biflexa did not trigger TLR5 signaling. However, unexpectedly, heat-killed bacteria stimulated human and bovine TLR5, but did not, or barely induced stimulation via murine TLR5. Abolition of TLR5 recognition required extensive boiling time of the bacteria or proteinase K treatment, showing an unusual high stability of the leptospiral flagellins. Interestingly, after using antimicrobial peptides to destabilize live leptospires, we detected TLR5 activity, suggesting that TLR5 could participate in the fight against leptospires in humans or cattle. Using different Leptospira strains with mutations in the flagellin proteins, we further showed that neither FlaA nor Fcp participated in the recognition by TLR5, suggesting a role for the FlaB. FlaB have structural homology to Salmonella FliC, and possess conserved residues important for TLR5 activation, as shown by in silico analyses. Accordingly, we found that leptospires regulate the expression of FlaB mRNA according to the growth phase in vitro, and that infection with L. interrogans in hamsters and in mice downregulated the expression of the FlaB, but not the FlaA subunits. Altogether, in contrast to different bacteria that modify their flagellin sequences to escape TLR5 recognition, our study suggests that the peculiar central localization and stability of the FlaB monomers in the periplasmic endoflagellae, associated with the downregulation of FlaB subunits in hosts, constitute an efficient strategy of leptospires to escape the TLR5 recognition and the induced immune response.


Asunto(s)
Flagelos/fisiología , Flagelina/metabolismo , Leptospira/fisiología , Leptospirosis/inmunología , Receptor Toll-Like 5/metabolismo , Animales , Bovinos , Femenino , Flagelina/genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Receptor Toll-Like 5/genética
15.
Methods Mol Biol ; 2134: 53-65, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32632859

RESUMEN

Leptospira species are one of the few spirochetes to possess a lipopolysaccharide (LPS) embedded in their outer membrane. Two protocols are currently available to extract and/or purify the leptospiral lipopolysaccharides: the rapid proteinase K method and the classical hot water/phenol extraction. The first method allows to get a quick overview of the LPS O antigen structure, whereas the second method is fitted to study the immunological properties of the leptospiral LPS. These two methods will be detailed in this chapter. Methodologies to assess the quality of the purification, such as the modified silver staining coloration, will also be reviewed. Both advantages and limitations of the different analyses will be described.


Asunto(s)
Técnicas de Laboratorio Clínico/métodos , Leptospira/química , Lipopolisacáridos/química , Lipopolisacáridos/aislamiento & purificación , Endopeptidasa K/química , Antígenos O/química , Antígenos O/aislamiento & purificación , Fenoles/química , Tinción con Nitrato de Plata/métodos
16.
Methods Mol Biol ; 2134: 149-160, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32632867

RESUMEN

The study of pathological processes is often limited to in vitro or ex vivo assays, while understanding pathogenesis of an infectious disease requires in vivo analysis. The use of pathogens, genetically modified to express with luminescent enzymes, combined to charge-coupled device (CCD) cameras, constitutes a major technological advance for assessing the course of infection in an intact, living host in real time and in a noninvasive way. This technology, also called bioluminescence imaging, detects the photons emitted from biological sources of light through animal tissues. Here, we describe the method we developed to monitor leptospirosis in a mouse model, by following in a spatiotemporal scale, the dissemination and spread of leptospires. These bacteria have been genetically modified to express the firefly luciferase, which produces light in the presence of the substrate D-luciferin. This useful and accessible technology facilitates the study of the kinetics of blood and tissue dissemination of live leptospires, and the pharmacological impact of treatments and host directed therapeutics.


Asunto(s)
Diagnóstico por Imagen/métodos , Leptospirosis/metabolismo , Mediciones Luminiscentes/métodos , Animales , Cinética , Luciferasas de Luciérnaga/metabolismo , Luminiscencia , Ratones , Fotones
17.
PLoS Negl Trop Dis ; 14(1): e0007950, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31905198

RESUMEN

The goal of this study was to characterize how natural routes of infection affect the kinetics of pathogenic Leptospira dissemination to blood and kidney. C3H/HeJ mice were sublethally infected with L. interrogans serovar Copenhageni FioCruz L1-130 (Leptospira) through exposure of a dermis wound and through oral and nasal mucosa, in comparison to uninfected mice and to mice infected via standard intraperitoneal inoculation. In striking contrast to oral mucosa inoculation, transdermal and nasal mucosa infections led to weight loss, renal colonization and inflammation, as previously observed for conjunctival and intraperitoneal infections. However, the timing at which Leptospira gained access to blood, as well as Leptospira' colonization of the kidney and shedding in urine, differed from intraperitoneal infection. Furthermore, a comparative analysis of transcription of pro-inflammatory mediators in kidney and total immunoglobulin isotyping in serum from infected mice, showed increased innate immune response markers (KC, MIP-2, TNF-α) and lower Th1 associated IFN-γ in kidney, as well as lower Th1 associated IgG2a in mice infected through the nasal mucosa as compared to intraperitoneal infection. We conclude that the route of infection affects the timing at which Leptospira gains access to blood for dissemination, as well as the dynamics of colonization and inflammation of the kidney.


Asunto(s)
Leptospira interrogans/fisiología , Leptospirosis/microbiología , Leptospirosis/transmisión , Animales , Inmunidad Innata , Inmunoglobulinas/sangre , Cinética , Leptospira interrogans/inmunología , Leptospirosis/inmunología , Ratones Endogámicos C3H , Mucosa Bucal , Mucosa Nasal , Nefritis/inmunología , Nefritis/microbiología , Nefritis/patología , Piel/lesiones , Piel/microbiología , Orina/microbiología
18.
Front Immunol ; 11: 572999, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519799

RESUMEN

Toll-Like Receptor (TLR) 4, the LPS receptor, plays a central role in the control of leptospirosis and absence of TLR4 results in lethal infection in mice. Because human TLR4 does not sense the atypical leptospiral-LPS, we hypothesized that TLR4/MD-2 humanized transgenic mice (huTLR4) may be more susceptible to leptospirosis than wild-type mice, and thus may constitute a model of acute human leptospirosis. We infected huTLR4 mice, which express human TLR4 but not murine TLR4, with a high dose of L. interrogans serovar Copenhageni FioCruz (Leptospira) in comparison to C57BL/6J wild-type (WT) and, as a control, a congenic strain in which the tlr4 coding sequences are deleted (muTLR4Lps-del). We show that the huTLR4 gene is fully functional in the murine background. We found that dissemination of Leptospira in blood, shedding in urine, colonization of the kidney and overall kinetics of leptospirosis progression is equivalent between WT and huTLR4 C57BL/6J mice. Furthermore, inflammation of the kidney appeared to be subdued in huTLR4 compared to WT mice in that we observed less infiltrates of mononuclear lymphocytes, less innate immune markers and no relevant differences in fibrosis markers. Thus, huTLR4 mice showed less inflammation and kidney pathology, and are not more susceptible to leptospirosis than WT mice. This study is significant as it indicates that one intact TLR4 gene, be it mouse or human, is necessary to control acute leptospirosis.


Asunto(s)
Riñón/patología , Leptospira interrogans/fisiología , Leptospirosis/inmunología , Enfermedad Aguda , Animales , Susceptibilidad a Enfermedades , Humanos , Leptospira interrogans/patogenicidad , Antígeno 96 de los Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Toll-Like 4/genética
19.
PLoS Pathog ; 15(5): e1007811, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31107928

RESUMEN

Leptospira interrogans are pathogenic spirochetes responsible for leptospirosis, a worldwide reemerging zoonosis. Many Leptospira serovars have been described, and prophylaxis using inactivated bacteria provides only short-term serovar-specific protection. Therefore, alternative approaches to limit severe leptospirosis in humans and morbidity in cattle would be welcome. Innate immune cells, including macrophages, play a key role in fighting infection and pathogen clearance. Recently, it has been shown that functional reprograming of innate immune cells through the activation of pattern recognition receptors leads to enhanced nonspecific antimicrobial responses upon a subsequent microbial encounter. This mechanism is known as trained immunity or innate immune memory. We have previously shown that oral treatment with Lactobacillus plantarum confers a beneficial effect against acute leptospirosis. Here, using a macrophage depletion protocol and live imaging in mice, we established the role of peritoneal macrophages in limiting the initial dissemination of leptospires. We further showed that intraperitoneal priming of mice with CL429, a TLR2 and NOD2 agonist known to mimic the modulatory effect of Lactobacillus, alleviated acute leptospiral infection. The CL429 treatment was characterized as a training effect since i.) it was linked to peritoneal macrophages that produced ex vivo more pro-inflammatory cytokines and chemokines against 3 different pathogenic serovars of Leptospira, independently of the presence of B and T cells, ii.) it had systemic effects on splenic cells and bone marrow derived macrophages, and iii.) it was sustained for 3 months. Importantly, trained macrophages produced more nitric oxide, a potent antimicrobial compound, which has not been previously linked to trained immunity. Accordingly, trained macrophages better restrict leptospiral survival. Finally, we could use CL429 to train ex vivo human monocytes that produced more cytokines upon leptospiral stimulation. In conclusion, host-directed treatment using a TLR2/NOD2 agonist could be envisioned as a novel prophylactic strategy against acute leptospirosis.


Asunto(s)
Memoria Inmunológica/inmunología , Leptospira interrogans/inmunología , Leptospirosis/prevención & control , Macrófagos Peritoneales/inmunología , Proteína Adaptadora de Señalización NOD2/agonistas , Bibliotecas de Moléculas Pequeñas/farmacología , Receptor Toll-Like 2/agonistas , Animales , Células Cultivadas , Citocinas/metabolismo , Femenino , Humanos , Memoria Inmunológica/efectos de los fármacos , Leptospirosis/inmunología , Leptospirosis/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
20.
Microbes Infect ; 20(9-10): 578-588, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29452258

RESUMEN

What are the new approaches and emerging ideas to prevent leptospirosis, a neglected bacterial re-emerging zoonotic disease? How do Leptospira interrogans escape the host defenses? We aim here to review and discuss the most recent literature that provides some answers to these questions, in particular data related to a better understanding of adaptive and innate immunity towards leptospires, and design of vaccines. This is an opinion paper, not a comprehensive review. We will try to highlight the new strategies and technologies boosting the search for drugs and vaccines. We will also address the bottlenecks and difficulties impairing the search for efficient vaccines and the many gaps in our knowledge of immunity against leptospirosis. Finally, we aim to delineate how Leptospira spp. escape the innate immune responses of Toll-Like receptors (TLR) and Nod-Like receptors (NLR). The rational use of TLR and NLR agonists as adjuvants could be key to design future vaccines against pathogenic leptospires.


Asunto(s)
Evasión Inmune , Leptospira interrogans/inmunología , Leptospirosis/inmunología , Adyuvantes Inmunológicos , Animales , Humanos , Riñón/microbiología , Leptospira interrogans/fisiología , Proteínas NLR/agonistas , Proteínas NLR/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA