Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
ACS Appl Bio Mater ; 6(8): 3241-3256, 2023 08 21.
Article En | MEDLINE | ID: mdl-37470762

Acoustic sensors are able to capture more incident energy if their acoustic impedance closely matches the acoustic impedance of the medium being probed, such as skin or wood. Controlling the acoustic impedance of polymers can be achieved by selecting materials with appropriate densities and stiffnesses as well as adding ceramic nanoparticles. This study follows a statistical methodology to examine the impact of polymer type and nanoparticle addition on the fabrication of acoustic sensors with desired acoustic impedances in the range of 1-2.2 MRayls. The proposed method using a design of experiments approach measures sensors with diaphragms of varying impedances when excited with acoustic vibrations traveling through wood, gelatin, and plastic. The sensor diaphragm is subsequently optimized for body sound monitoring, and the sensor's improved body sound coherence and airborne noise rejection are evaluated on an acoustic phantom in simulated noise environments and compared to electronic stethoscopes with onboard noise cancellation. The impedance-matched sensor demonstrates high sensitivity to body sounds, low sensitivity to airborne sound, a frequency response comparable to two state-of-the-art electronic stethoscopes, and the ability to capture lung and heart sounds from a real subject. Due to its small size, use of flexible materials, and rejection of airborne noise, the sensor provides an improved solution for wearable body sound monitoring, as well as sensing from other mediums with acoustic impedances in the range of 1-2.2 MRayls, such as water and wood.


Acoustics , Diaphragm , Electric Impedance , Static Electricity , Vibration
2.
Sci Total Environ ; 865: 161229, 2023 Mar 20.
Article En | MEDLINE | ID: mdl-36586683

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants that are widely monitored in marine biota from urbanized areas, due to their toxicity to aquatic organisms. Teleost fish can quickly metabolize PAHs into hydroxylated forms (OHPAHs) that, in some cases, are more toxic than the parent (unmetabolized) PAHs. But due to this fast metabolism, monitoring traditional parent PAHs in fish can cause underestimation on assessing PAH exposure. In addition, environmental levels of individual OHPAH metabolites are lacking in the literature worldwide. Therefore, we developed a rapid and accurate analytical method in which a number of individual OHPAHs metabolites are measured simultaneously in fish bile, via liquid chromatography coupled with tandem mass spectrometry, including low and high molecular weight mono- and diol-OHPAHs. We analyzed bile samples of 119 English sole (Parophrys vetulus) collected from 14 Puget Sound, WA, USA, sites, which has multiple sources of PAHs, including urban stormwater runoff, wastewater effluents, as well as an inactive creosote facility. The mean (± SD) biliary summed OHPAH (∑OHPAH) concentrations determined in English sole from urban, near-urban, and non-urban sites were 790 ± 1400 (n = 46), 310 ± 330 (n = 44) and 130 ± 200 (n = 29) ng/mL, respectively, with a maximum reaching 9400 ng/mL in a sample from an urban site. We compared these novel biliary OHPAH metabolite data with parent PAHs measured in stomach content of the same individual sole. Biliary ∑OHPAH concentrations were significantly correlated with the levels of ∑PAH in stomach content, however, with major differences in their distribution. We also demonstrated that biliary OHPAH metabolite data in English sole can potentially be used to distinguish different sampling sites due to a specific variety and intensity of PAH sources in the aquatic environment, which makes this a very important analytical approach for assessing PAH exposure in the environment.


Flounder , Polycyclic Aromatic Hydrocarbons , Animals , Bile/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Tandem Mass Spectrometry , Chromatography, Liquid , Fishes
3.
Sensors (Basel) ; 22(23)2022 Nov 23.
Article En | MEDLINE | ID: mdl-36501787

Many commercial and prototype devices are available for capturing body sounds that provide important information on the health of the lungs and heart; however, a standardized method to characterize and compare these devices is not agreed upon. Acoustic phantoms are commonly used because they generate repeatable sounds that couple to devices using a material layer that mimics the characteristics of skin. While multiple acoustic phantoms have been presented in literature, it is unclear how design elements, such as the driver type and coupling layer, impact the acoustical characteristics of the phantom and, therefore, the device being measured. Here, a design of experiments approach is used to compare the frequency responses of various phantom constructions. An acoustic phantom that uses a loudspeaker to generate sound and excite a gelatin layer supported by a grid is determined to have a flatter and more uniform frequency response than other possible designs with a sound exciter and plate support. When measured on an optimal acoustic phantom, three devices are shown to have more consistent measurements with added weight and differing positions compared to a non-optimal phantom. Overall, the statistical models developed here provide greater insight into acoustic phantom design for improved device characterization.


Acoustics , Sound , Equipment Design , Phantoms, Imaging , Gelatin
4.
PLoS One ; 17(9): e0269269, 2022.
Article En | MEDLINE | ID: mdl-36149869

Despite growing interest in edible seaweeds, there is limited information on seaweed chemical contaminant levels in the Salish Sea. Without this knowledge, health-based consumption advisories can not be determined for consumers that include Tribes and First Nations, Asian and Pacific Islander community members, and recreational harvesters. We measured contaminant concentrations in edible seaweeds (Fucus distichus, F. spiralis, and Nereocystis luetkeana) from 43 locations in the Salish Sea. Metals were analyzed in all samples, and 94 persistent organic pollutants (POPs) (i.e. 40 PCBs, 15 PBDEs, 17 PCDD/Fs, and 22 organochlorine pesticides) and 51 PAHs were analyzed in Fucus spp. We compared concentrations of contaminants to human health-based screening levels calculated from the USEPA and to international limits. We then worked with six focal contaminants that either exceeded screening levels or international limits (Cd, total Hg, Pb, benzo[a]pyrene [BaP], and PCBs) or are of regional interest (total As). USEPA cancer-based screening levels were exceeded in 30 samples for the PCBs and two samples for BaP. Cadmium concentrations did not exceed the USEPA noncancer-based screening level but did exceed international limits at all sites. Lead exceeded international limits at three sites. Because there are no screening levels for total Hg and total As, and to be conservative, we made comparisons to methyl Hg and inorganic As screening levels. All samples were below the methyl Hg and above the inorganic As screening levels. Without knowledge of the As speciation, we cannot assess the health risk associated with the As. While seaweed was the focus, we did not consider contaminant exposure from consuming other foods. Other chemicals, such as contaminants of emerging concern (e.g., PFAS, pharmaceuticals and personal care products), should also be considered. Additionally, although we focused on toxicological aspects, there are cultural and health benefits of seaweed use that may affect consumer choice.


Fluorocarbons , Mercury , Pesticides , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Seaweed , Water Pollutants, Chemical , Benzo(a)pyrene , Cadmium , Dibenzofurans , Environmental Monitoring , Halogenated Diphenyl Ethers , Humans , Lead , Mercury/analysis , Persistent Organic Pollutants , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis
5.
Sensors (Basel) ; 22(14)2022 Jul 14.
Article En | MEDLINE | ID: mdl-35890946

Carbon−polymer composite-based pressure sensors have many attractive features, including low cost, easy integration, and facile fabrication. Previous studies on carbon−polymer composite sensors focused on very high sensitivities for low pressure ranges (10 s of kPa), which saturate quickly at higher pressures and thus are ill-suited to measure the high pressure ranges found in various applications, including those in underwater (>1 atm, 101 kPa) and industrial environments. Current sensors designed for high pressure environments are often difficult to fabricate, expensive, and, similarly to their low-pressure counterparts, have a narrow sensing range. To address these issues, this work reports the design, synthesis, characterization, and analysis of high-pressure TPU-MWCNT based composite sensors, which detect pressures from 0.5 MPa (4.9 atm) to over 10 MPa (98.7 atm). In this study, the typical approach to improve sensitivity by increasing conductive additive concentration was found to decrease sensor performance at elevated pressures. It is shown that a better approach to elevated pressure sensitivity is to increase sensor response range by decreasing the MWCNT weight percentage, which improves sensing range and resolution. Such sensors can be useful for measuring high pressures in many industrial (e.g., manipulator feedback), automotive (e.g., damping elements, bushings), and underwater (e.g., depth sensors) applications.


Nanotubes, Carbon , Polymers , Electric Conductivity
6.
IEEE J Biomed Health Inform ; 25(7): 2583-2594, 2021 07.
Article En | MEDLINE | ID: mdl-33534721

Chest auscultation is a widely used clinical tool for respiratory disease detection. The stethoscope has undergone a number of transformative enhancements since its invention, including the introduction of electronic systems in the last two decades. Nevertheless, stethoscopes remain riddled with a number of issues that limit their signal quality and diagnostic capability, rendering both traditional and electronic stethoscopes unusable in noisy or non-traditional environments (e.g., emergency rooms, rural clinics, ambulatory vehicles). This work outlines the design and validation of an advanced electronic stethoscope that dramatically reduces external noise contamination through hardware redesign and real-time, dynamic signal processing. The proposed system takes advantage of an acoustic sensor array, an external facing microphone, and on-board processing to perform adaptive noise suppression. The proposed system is objectively compared to six commercially-available acoustic and electronic devices in varying levels of simulated noisy clinical settings and quantified using two metrics that reflect perceptual audibility and statistical similarity, normalized covariance measure (NCM) and magnitude squared coherence (MSC). The analyses highlight the major limitations of current stethoscopes and the significant improvements the proposed system makes in challenging settings by minimizing both distortion of lung sounds and contamination by ambient noise.


Auscultation , Stethoscopes , Humans , Lung , Noise , Respiratory Sounds
7.
Pediatr Pulmonol ; 55(11): 3197-3208, 2020 11.
Article En | MEDLINE | ID: mdl-32852888

BACKGROUND: Whether digitally recorded lung sounds are associated with radiographic pneumonia or clinical outcomes among children in low-income and middle-income countries is unknown. We sought to address these knowledge gaps. METHODS: We enrolled 1 to 59monthold children hospitalized with pneumonia at eight African and Asian Pneumonia Etiology Research for Child Health sites in six countries, recorded digital stethoscope lung sounds, obtained chest radiographs, and collected clinical outcomes. Recordings were processed and classified into binary categories positive or negative for adventitial lung sounds. Listening and reading panels classified recordings and radiographs. Recording classification associations with chest radiographs with World Health Organization (WHO)-defined primary endpoint pneumonia (radiographic pneumonia) or mortality were evaluated. We also examined case fatality among risk strata. RESULTS: Among children without WHO danger signs, wheezing (without crackles) had a lower adjusted odds ratio (aOR) for radiographic pneumonia (0.35, 95% confidence interval (CI): 0.15, 0.82), compared to children with normal recordings. Neither crackle only (no wheeze) (aOR: 2.13, 95% CI: 0.91, 4.96) or any wheeze (with or without crackle) (aOR: 0.63, 95% CI: 0.34, 1.15) were associated with radiographic pneumonia. Among children with WHO danger signs no lung recording classification was independently associated with radiographic pneumonia, although trends toward greater odds of radiographic pneumonia were observed among children classified with crackle only (no wheeze) or any wheeze (with or without crackle). Among children without WHO danger signs, those with recorded wheezing had a lower case fatality than those without wheezing (3.8% vs. 9.1%, p = .03). CONCLUSIONS: Among lower risk children without WHO danger signs digitally recorded wheezing is associated with a lower odds for radiographic pneumonia and with lower mortality. Although further research is needed, these data indicate that with further development digital auscultation may eventually contribute to child pneumonia care.


Auscultation , Pneumonia/diagnosis , Respiratory Sounds/diagnosis , Thorax/diagnostic imaging , Child Mortality , Child, Preschool , Female , Humans , Infant , Male , Odds Ratio , Pneumonia/mortality , Pneumonia/physiopathology , Radiography , Respiratory Sounds/physiopathology
8.
Sci Total Environ ; 712: 135516, 2020 Apr 10.
Article En | MEDLINE | ID: mdl-31806347

Understanding the spatial extent, magnitude, and source of contaminant exposure in biota is necessary to formulate appropriate conservation measures to reduce or remediate contaminant exposure. However, obtaining such information for migratory animals is challenging. Juvenile Chinook salmon (Oncorhynchus tshawytscha), a threatened species throughout the US Pacific Northwest, are exposed to persistent organic pollutants (POPs), including polybrominated diphenyl ether (PBDE) flame retardants and polychlorinated biphenyls (PCBs), in many developed rivers and estuaries. This study used three types of complementary chemical tracer data (contaminant concentrations, POP fingerprints, and stable isotopes), to determine the location and source of contaminant exposure for natural- and hatchery-origin Chinook salmon migrating seaward through a developed watershed with multiple contaminant sources. Concentration data revealed that salmon were exposed to and accumulated predominantly PBDEs and PCBs in the lower mainstem region of the river, with higher PBDEs in natural- than hatchery-origin fish but similar PCBs in both groups, associated with differences in contaminant inputs and/or habitat use. The POP fingerprints of the natural-origin-fish captured from this region were also distinct from other region and origin sample groups, with much higher proportions of PBDEs in the total POP concentration, indicating a different contaminant source or habitat use than the hatchery-origin fish. Stable isotopes, independent tracers of food sources and habitat use, revealed that natural-origin fish from this region also had depleted δ15N signatures compared to other sample groups, associated with exposure to nutrient-rich wastewater. The PBDE-enhanced POP fingerprints in these salmon were correlated with the degree of depletion in nitrogen stable isotopes of the fish, suggesting a common wastewater source for both the PBDEs and the nitrogen. Identification of the location and source of contaminant exposure allows environmental managers to establish conservation measures to control contaminant inputs, necessary steps to improve the health of Chinook salmon and enhance their marine survival.


Salmon , Animals , Environmental Pollutants , Estuaries , Northwestern United States , Polychlorinated Biphenyls , Water Pollutants, Chemical
9.
Mar Pollut Bull ; 142: 253-262, 2019 May.
Article En | MEDLINE | ID: mdl-31232302

We used manually spawned, field-deployed embryos of a common marine fish species, Pacific herring (Clupea pallasii), to evaluate accumulation of polycyclic aromatic hydrocarbons (PAHs) associated with an incomplete creosote-treated piling (CTP) removal project. Embryos near undisturbed 100-year-old CTPs (before removal) accumulated higher PAHs and exhibited higher cyp1a gene expression than embryos from reference areas. Embryos incubated close to CTP debris after CTP removal showed PAHs 90 times higher than reference areas up to a year after CTP removal. cyp1a fold-induction correlated with total embryo PAHs in all three years. Patterns of individual PAH chemicals differed slightly between embryos, wood sampled from CTPs, and passive samplers. This study illustrates the importance of using appropriate techniques and procedures to remove CTPs in aquatic environments to prevent release of toxic chemicals. Of particular concern is that incomplete CTP removal could expose sensitive life stages of fishes to chemicals that may reduce their survival.


Creosote , Fishes/embryology , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Animals , Cytochrome P-450 CYP1A1/genetics , Ecosystem , Ecotoxicology/methods , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Fish Proteins/genetics , Fishes/physiology , Gene Expression Regulation, Developmental/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Washington , Water Pollutants, Chemical/toxicity , Wood
11.
Nanoscale ; 9(37): 14215-14228, 2017 Sep 28.
Article En | MEDLINE | ID: mdl-28914318

Piezoelectric composite (p-NC) made of a polymeric matrix and piezoelectric nanoparticles with conductive additives is an attractive material for many applications. As the matrix of p-NC is made of viscoelastic materials, both elastic and viscous characteristics of the matrix are expected to contribute to the piezoelectric response of p-NC. However, there is limited understanding of how viscoelasticity influences the piezoelectric performance of p-NC. Here we combined analytical and numerical analyses with experimental studies to investigate effects of viscoelasticity on piezoelectric performance of p-NC. The viscoelastic properties of synthesized p-NCs were controlled by changing the ratio between monomer and cross-linker of the polymer matrix. We found good agreement between our analytical models and experimental results for both quasi-static and dynamic loadings. It is found that, under quasi-static loading conditions, the piezoelectric coefficients (d33) of the specimen with the lowest Young's modulus (∼0.45 MPa at 5% strain) were ∼120 pC N-1, while the one with the highest Young's modulus (∼1.3 MPa at 5% strain) were ∼62 pC N-1. The results suggest that softer matrices enhance the energy harvesting performance because they can result in larger deformation for a given load. Moreover, from our theoretical analysis and experiments under dynamic loading conditions, we found the viscous modulus of a matrix is also important for piezoelectric performance. For instance, at 40 Hz and 50 Hz the storage moduli of the softest specimen were ∼0.625 MPa and ∼0.485 MPa, while the loss moduli were ∼0.108 MPa and ∼0.151 MPa, respectively. As piezocomposites with less viscous loss can transfer mechanical energy to piezoelectric particles more efficiently, the dynamic piezoelectric coefficient (d'33) measured at 40 Hz (∼53 pC N-1) was larger than that at 50 Hz (∼47 pC N-1) though it has a larger storage modulus. As an application of our findings, we fabricated 3D piezo-shells with different viscoelastic properties and compared the charging time. The results showed a good agreement with the predicted trend that the composition with the smallest elastic and viscous moduli showed the fastest charging rate. Our findings can open new opportunities for optimizing the performance of polymer-based multifunctional materials by harnessing viscoelasticity.

12.
BMJ Open Respir Res ; 4(1): e000193, 2017.
Article En | MEDLINE | ID: mdl-28883927

INTRODUCTION: Paediatric lung sound recordings can be systematically assessed, but methodological feasibility and validity is unknown, especially from developing countries. We examined the performance of acoustically interpreting recorded paediatric lung sounds and compared sound characteristics between cases and controls. METHODS: Pneumonia Etiology Research for Child Health staff in six African and Asian sites recorded lung sounds with a digital stethoscope in cases and controls. Cases aged 1-59 months had WHO severe or very severe pneumonia; age-matched community controls did not. A listening panel assigned examination results of normal, crackle, wheeze, crackle and wheeze or uninterpretable, with adjudication of discordant interpretations. Classifications were recategorised into any crackle, any wheeze or abnormal (any crackle or wheeze) and primary listener agreement (first two listeners) was analysed among interpretable examinations using the prevalence-adjusted, bias-adjusted kappa (PABAK). We examined predictors of disagreement with logistic regression and compared case and control lung sounds with descriptive statistics. RESULTS: Primary listeners considered 89.5% of 792 case and 92.4% of 301 control recordings interpretable. Among interpretable recordings, listeners agreed on the presence or absence of any abnormality in 74.9% (PABAK 0.50) of cases and 69.8% (PABAK 0.40) of controls, presence/absence of crackles in 70.6% (PABAK 0.41) of cases and 82.4% (PABAK 0.65) of controls and presence/absence of wheeze in 72.6% (PABAK 0.45) of cases and 73.8% (PABAK 0.48) of controls. Controls, tachypnoea, >3 uninterpretable chest positions, crying, upper airway noises and study site predicted listener disagreement. Among all interpretable examinations, 38.0% of cases and 84.9% of controls were normal (p<0.0001); wheezing was the most common sound (49.9%) in cases. CONCLUSIONS: Listening panel and case-control data suggests our methodology is feasible, likely valid and that small airway inflammation is common in WHO pneumonia. Digital auscultation may be an important future pneumonia diagnostic in developing countries.

13.
Arch Environ Contam Toxicol ; 73(2): 207-229, 2017 Aug.
Article En | MEDLINE | ID: mdl-28528416

We modeled temporal trends in polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and dichlorodiphenyltrichloroethane and its metabolites (DDTs) in two indicator fish species representing benthic and pelagic habitats in Puget Sound, Washington, USA. English sole (Parophrys vetulus, benthic) index sites and larger-scale Pacific herring (Clupea pallasii, pelagic) foraging areas represented a wide range of possible contamination conditions, with sampling locations situated adjacent to watersheds exhibiting high, medium and low development. Consistency in analytical data throughout the study was maintained by either calculating method-bias-correction factors on paired samples as methods evolved or by analyzing older archived samples by current methods. PCBs declined moderately in two herring stocks from a low-development basin (2.3 and 4.0% annual rate of decline) and showed no change in the highly developed and moderately developed basins during a 16- to 21-year period. PCBs increased in English sole from four of ten sites (2.9-7.1%), and the remaining six exhibited no significant change. PBDEs and DDTs declined significantly in all herring stocks (4.2-8.1%), although analytical challenges warrant caution in interpreting DDT results. PBDEs declined in English sole from two high-development and one low-development site (3.7-7.2%) and remained unchanged in the remaining seven. DDTs increased in English sole from one high-development site (Tacoma City Waterway) and declined in two high-development and one low development site. As with herring, analytical challenges warrant caution in interpreting the English sole DDT results. It is likely that source controls and mitigation efforts have contributed to the declines in PBDEs and DDTs overall, whereas PCBs appear to have persisted, especially in the pelagic food web, despite bans in PCB production and use.


Environmental Monitoring , Fishes/metabolism , Water Pollutants, Chemical/metabolism , Animals , Food Chain , Halogenated Diphenyl Ethers/metabolism , Hydrocarbons, Chlorinated/metabolism , Polychlorinated Biphenyls/metabolism , Washington
14.
Sci Total Environ ; 499: 114-24, 2014 Nov 15.
Article En | MEDLINE | ID: mdl-25181043

Pacific herring embryos spawned in nearshore habitats may be exposed to toxic contaminants as they develop, from exogenous sources in spawning habitats and from maternal transfer. Determining baseline concentrations of these toxic contaminants is important for evaluating the health of this species, especially during this sensitive life stage. In this study we compared concentrations of polycyclic aromatic hydrocarbons, or PAHs, in naturally spawned herring embryos from five spawning areas across Puget Sound. The summed values of 31 PAH analytes (Σ31PAH) in early- to late-stage development embryos ranged from 1.1 to 140 ng/g, wet weight. Σ31PAH concentrations increased with development time in embryos from one spawning area where the greatest concentrations were observed, and the relative abundance of PAH chemicals in late-stage embryos was similar to those in nearby sediments, suggesting accumulation from local environmental sources. PAHs in both sediments and late-stage embryos appeared to exhibit a pyrogenic pattern. Although maternal transfer of PAHs appeared to be a negligible source to embryos in spawning areas with the greatest embryo PAH concentrations, maternal transfer may have been the dominant source in embryos from spawning areas where the lowest levels of embryo-PAHs occurred. Chronic embryo mortality has been reported in spawning habitats where we observed the greatest concentration of PAHs in embryos, and necrotic tissue in herring embryos from one such location was similar in description to phototoxic PAH necrosis reported elsewhere for embryonic zebrafish.


Embryo, Nonmammalian/metabolism , Environmental Monitoring , Fishes/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Water Pollutants, Chemical/metabolism , Animals , Ecosystem , Polycyclic Aromatic Hydrocarbons/standards , Washington , Water Pollutants, Chemical/standards
15.
J Acoust Soc Am ; 135(6): EL291-7, 2014 Jun.
Article En | MEDLINE | ID: mdl-24907836

Velocity and pressure microphones composed of piezoelectric poly(γ-benzyl-α,L-glutamate) (PBLG) nanofibers were produced by adhering a single layer of PBLG film to a Mylar diaphragm. The device exhibited a sensitivity of -60 dBV/Pa in air, and both pressure and velocity response showed a broad frequency response that was primarily controlled by the stiffness of the supporting diaphragm. The pressure microphone response was ±3 dB between 200 Hz and 4 kHz when measured in a semi-anechoic chamber. Thermal stability, easy fabrication, and simple design make this single element transducer ideal for various applications including those for underwater and high temperature use.


Acoustics/instrumentation , Nanofibers , Polyglutamic Acid/analogs & derivatives , Transducers, Pressure , Equipment Design , Membranes, Artificial , Models, Theoretical , Motion , Polyethylene Terephthalates/chemistry , Polyglutamic Acid/chemistry , Signal Processing, Computer-Assisted , Sound , Time Factors
16.
Chemosphere ; 92(11): 1550-6, 2013 Sep.
Article En | MEDLINE | ID: mdl-23683869

This study describes a recently developed and rapid method to measure bisphenol A (BPA), 17ß-estradiol (E2) and 17α-ethynylestradiol (EE2) in bile of fish using enzymatic hydrolysis of samples followed by solid-phase extraction and ultra-performance liquid chromatography with tandem mass spectrometry. The limits of quantitation (LOQ) for BPA, EE2 and E2 were 6.3ngmL(-1), 12.5ngmL(-1) and 6.3ngmL(-1), respectively. These compounds were analyzed in bile of male English sole (Parophrys vetulus) collected from urban and non-urban sites in Puget Sound, WA, USA. The BPA and E2 concentrations (and occurrence) ranged from

Bile/chemistry , Endocrine Disruptors/analysis , Environmental Monitoring/methods , Flatfishes , Oceans and Seas , Animals , Bile/enzymology , Cities , Endocrine Disruptors/metabolism , Hydrolysis , Limit of Detection , Male , Reproducibility of Results , Time Factors , Washington
17.
Proc Natl Acad Sci U S A ; 109(2): E51-8, 2012 Jan 10.
Article En | MEDLINE | ID: mdl-22203989

In November 2007, the container ship Cosco Busan released 54,000 gallons of bunker fuel oil into San Francisco Bay. The accident oiled shoreline near spawning habitats for the largest population of Pacific herring on the west coast of the continental United States. We assessed the health and viability of herring embryos from oiled and unoiled locations that were either deposited by natural spawning or incubated in subtidal cages. Three months after the spill, caged embryos at oiled sites showed sublethal cardiac toxicity, as expected from exposure to oil-derived polycyclic aromatic compounds (PACs). By contrast, embryos from the adjacent and shallower intertidal zone showed unexpectedly high rates of tissue necrosis and lethality unrelated to cardiotoxicity. No toxicity was observed in embryos from unoiled sites. Patterns of PACs at oiled sites were consistent with oil exposure against a background of urban sources, although tissue concentrations were lower than expected to cause lethality. Embryos sampled 2 y later from oiled sites showed modest sublethal cardiotoxicity but no elevated necrosis or mortality. Bunker oil contains the chemically uncharacterized remains of crude oil refinement, and one or more of these unidentified chemicals likely interacted with natural sunlight in the intertidal zone to kill herring embryos. This reveals an important discrepancy between the resolving power of current forensic analytical chemistry and biological responses of keystone ecological species in oiled habitats. Nevertheless, we successfully delineated the biological impacts of an oil spill in an urbanized coastal estuary with an overlapping backdrop of atmospheric, vessel, and land-based sources of PAC pollution.


Embryo, Nonmammalian/drug effects , Environmental Monitoring/statistics & numerical data , Environmental Pollutants/toxicity , Fish Diseases/chemically induced , Fish Diseases/mortality , Necrosis/veterinary , Petroleum Pollution/adverse effects , Analysis of Variance , Animals , Cardiotoxins/analysis , Cardiotoxins/toxicity , Environmental Pollutants/analysis , Gas Chromatography-Mass Spectrometry , Necrosis/chemically induced , Necrosis/mortality , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Salinity , San Francisco , Seawater , Temperature
19.
BMC Mol Biol ; 10: 5, 2009 Feb 02.
Article En | MEDLINE | ID: mdl-19187532

BACKGROUND: We attempted to clone candidate genes on 10p 14-15 which may regulate hTERT expression, through exon trapping using 3 BAC clones covering the region. After obtaining 20 exons, we examined the function of RGM249 (RGM: RNA gene for miRNAs) we cloned from primary cultured human hepatocytes and hepatoma cell lines. We confirmed approximately 20 bp products digested by Dicer, and investigated the function of this cloned gene and its involvement in hTERT expression by transfecting the hepatoma cell lines with full-length dsRNA, gene-specific designed siRNA, and shRNA-generating plasmid. RESULTS: RGM249 showed cancer-dominant intense expression similar to hTERT in cancer cell lines, whereas very weak expression was evident in human primary hepatocytes without telomerase activity. This gene was predicted to be a noncoding precursor RNA gene. Interestingly, RGM249 dsRNA, siRNA, and shRNA inhibited more than 80% of hTERT mRNA expression. In contrast, primary cultured cells overexpressing the gene showed no significant change in hTERT mRNA expression; the overexpression of the gene strongly suppressed hTERT mRNA in poorly differentiated cells. CONCLUSION: These findings indicate that RGM249 might be a microRNA precursor gene involved in the differentiation and function upstream of hTERT.


MicroRNAs/genetics , Telomerase/genetics , Base Sequence , Cell Line , Cell Line, Tumor , Chromosomes, Human, Pair 10 , Humans , MicroRNAs/metabolism , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Telomerase/metabolism
20.
Sci Total Environ ; 394(2-3): 369-78, 2008 May 15.
Article En | MEDLINE | ID: mdl-18314160

We examined the geographic distribution and magnitude of three persistent organic pollutants (POPs) in Pacific herring, representing three populations from Puget Sound, Washington State, USA and three from the Strait of Georgia (British Columbia, Canada and Washington State). We measured PCBs, DDTs and DDT isomers, and hexachlorobenzene in whole herring using high performance liquid chromatography, which provided a relatively inexpensive estimation of total PCBs, including the most commonly encountered congeners, and DDT isomers. Puget Sound herring were 3 to 9 times more contaminated with polychlorinated biphenyls (PCBs) compared to Strait of Georgia herring and 1.5 to 2.5 times more contaminated with DDTs. Hexachlorobenzene levels were low in all samples, relative to PCBs and DDTs, and one Strait of Georgia population (Cherry Point) had significantly lower HCB levels than the rest. A multidimensional scaling map of the pattern or "fingerprint" of POPs in the six herring populations suggests strong environmental segregation of Puget Sound herring from the Strait of Georgia populations, and isolation of all Strait of Georgia populations from each other. This segregation likely resulted from differential exposure to contaminants, related to where these populations reside and feed, rather than differences in their age, size, trophic level, or lipid content.


Fishes/metabolism , Hydrocarbons, Chlorinated/metabolism , Water Pollutants, Chemical/metabolism , Animals , British Columbia , Environmental Monitoring , Male , Washington
...