Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MAbs ; 16(1): 2300155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38241085

RESUMEN

Rozanolixizumab is a humanized anti-neonatal Fc receptor (FcRn) monoclonal antibody (mAb) of the immunoglobulin G4 (IgG4) sub-class, currently in clinical development for the treatment of IgG autoantibody-driven diseases. This format is frequently used for therapeutic mAbs due to its intrinsic lower affinity for Fc gamma receptors (FcγR) and lack of C1q engagement. However, with growing evidence suggesting that no Fc-containing agent is truly "silent" in this respect, we explored the engagement of FcγRs and potential functional consequences with rozanolixizumab. In the study presented here, rozanolixizumab was shown to bind to FcγRs in both protein-protein and cell-based assays, and the kinetic data were broadly as expected based on published data for an IgG4 mAb. Rozanolixizumab was also able to mediate antibody bipolar bridging (ABB), a phenomenon that led to a reduction of labeled FcγRI from the surface of human macrophages in an FcRn-dependent manner. However, the presence of exogenous human IgG, even at low concentrations, was able to prevent both binding and ABB events. Furthermore, data from in vitro experiments using relevant human cell types that express both FcRn and FcγRI indicated no evidence for functional sequelae in relation to cellular activation events (e.g., intracellular signaling, cytokine production) upon either FcRn or FcγR binding of rozanolixizumab. These data raise important questions about whether therapeutic antagonistic mAbs like rozanolixizumab would necessarily engage FcγRs at doses typically administered to patients in the clinic, and hence challenge the relevance and interpretation of in vitro assays performed in the absence of competing IgG.


Asunto(s)
Receptores Fc , Receptores de IgG , Humanos , Anticuerpos Monoclonales Humanizados/metabolismo , Anticuerpos Monoclonales , Inmunoglobulina G , Antígenos de Histocompatibilidad Clase I
2.
MAbs ; 15(1): 2289681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38084840

RESUMEN

Gremlin-1, a high-affinity antagonist of bone morphogenetic proteins (BMP)-2, -4, and -7, is implicated in tumor initiation and progression. Increased gremlin-1 expression, and therefore suppressed BMP signaling, correlates with poor prognosis in a range of cancer types. A lack of published work using therapeutic modalities has precluded the testing of the hypothesis that blocking the gremlin-1/BMP interaction will provide benefits to patients. To address this shortfall, we developed ginisortamab (UCB6114), a first-in-class clinical anti-human gremlin-1 antibody, currently in clinical development for the treatment of cancer, along with its murine analog antibody Ab7326 mouse immunoglobulin G1 (mIgG1). Surface plasmon resonance assays revealed that ginisortamab and Ab7326 mIgG1 had similar affinities for human and mouse gremlin-1, with mean equilibrium dissociation constants of 87 pM and 61 pM, respectively. The gremlin-1/Ab7326 antigen-binding fragment (Fab) crystal structure revealed a gremlin-1 dimer with a Fab molecule bound to each monomer that blocked BMP binding. In cell culture experiments, ginisortamab fully blocked the activity of recombinant human gremlin-1, and restored BMP signaling pathways in human colorectal cancer (CRC) cell lines. Furthermore, in a human CRC - fibroblast co-culture system where gremlin-1 is produced by the fibroblasts, ginisortamab restored BMP signaling in both the CRC cells and fibroblasts, demonstrating its activity in a relevant human tumor microenvironment model. The safety and efficacy of ginisortamab are currently being evaluated in a Phase 1/2 clinical trial in patients with advanced solid tumors (NCT04393298).


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Animales , Ratones , Línea Celular , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
3.
Front Immunol ; 11: 1894, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973785

RESUMEN

Interleukin (IL)-17A is a key driver of inflammation and the principal target of anti-IL-17 therapeutic monoclonal antibodies. IL-17A, and its structurally similar family member IL-17F, have been shown to be functionally dysregulated in certain human immune-mediated inflammatory diseases such as psoriasis, psoriatic arthritis, and axial spondyloarthritis. Given the overlapping biology of these two cytokines, we postulated that dual neutralization of IL-17A and IL-17F may provide a greater depth of clinical response in IL-17-mediated diseases than IL-17A inhibition alone. We identified 496.g1, a humanized antibody with strong affinity for IL-17A but poor affinity for IL-17F. Affinity maturation of 496.g1 to 496.g3 greatly enhanced the affinity of the Fab fragment for IL-17F while retaining strong binding to IL-17A. As an IgG1, the affinity for IL-17A and IL-17F was 3.2 pM and 23 pM, respectively. Comparison of 496.g3 IgG1 with the commercially available anti-IL-17A monoclonal antibodies ixekizumab and secukinumab, by surface plasmon resonance and in a human in vitro IL-17A functional assay, showed that 496.g3 and ixekizumab display equivalent affinity for IL-17A, and that both antibodies are markedly more potent than secukinumab. In contrast to ixekizumab and secukinumab, 496.g3 exhibited the unique feature of also being able to neutralize the biological activity of IL-17F. Therefore, antibody 496.g3 was selected for clinical development for its ability to neutralize the biologic function of both IL-17A and IL-17F and was renamed bimekizumab (formerly UCB4940). Early clinical data in patients with psoriasis, in those with psoriatic arthritis, and from the Phase 2 studies in psoriasis, psoriatic arthritis, and ankylosing spondylitis, are encouraging and support the targeted approach of dual neutralization of IL-17A and IL-17F. Taken together, these findings provide the rationale for the continued clinical evaluation of bimekizumab in patients with immune-mediated inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Neutralizantes/farmacología , Interleucina-17/antagonistas & inhibidores , Animales , Antiinflamatorios/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/inmunología , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Células CHO , Simulación por Computador , Cricetulus , Humanos , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Macaca fascicularis , Modelos Biológicos , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Psoriasis/metabolismo , Espondilitis Anquilosante/tratamiento farmacológico , Espondilitis Anquilosante/inmunología , Espondilitis Anquilosante/metabolismo
4.
Protein Eng Des Sel ; 32(6): 277-288, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31868219

RESUMEN

Native state aggregation is an important concern in the development of therapeutic antibodies. Enhanced knowledge of mAb native state aggregation mechanisms would permit sequence-based selection and design of therapeutic mAbs with improved developability. We investigated how electrostatic interactions affect the native state aggregation of seven human IgG1 and IgG4P mAb isotype pairs, each pair having identical variable domains that are different for each set of IgG1 and IgG4P constructs. Relative aggregation propensities were determined at pH 7.4, representing physiological conditions, and pH 5.0, representing commonly used storage conditions. Our work indicates that the net charge state of variable domains relative to the net charge state of the constant domains is predominantly responsible for the different native state aggregation behavior of IgG1 and IgG4P mAbs. This observation suggests that the global net charge of a multi domain protein is not a reliable predictor of aggregation propensity. Furthermore, we demonstrate a design strategy in the frameworks of variable domains to reduce the native state aggregation propensity of mAbs identified as being aggregation-prone. Importantly, substitution of specifically identified residues with alternative, human germline residues, to optimize Fv charge, resulted in decreased aggregation potential at pH 5.0 and 7.4, thus increasing developability.


Asunto(s)
Sustitución de Aminoácidos , Inmunoglobulina G/química , Inmunoglobulina G/genética , Agregado de Proteínas/genética , Ingeniería de Proteínas , Electricidad Estática , Inmunoglobulina G/metabolismo , Modelos Moleculares , Conformación Proteica
5.
MAbs ; 10(7): 1111-1130, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30130439

RESUMEN

Rozanolixizumab (UCB7665), a humanized high-affinity anti-human neonatal Fc receptor (FcRn) monoclonal antibody (IgG4P), has been developed to reduce pathogenic IgG in autoimmune and alloimmune diseases. We document the antibody isolation and compare rozanolixizumab with the same variable region expressed in various mono-, bi- and trivalent formats. We report activity data for rozanolixizumab and the different molecular formats in human cells, FcRn-transgenic mice, and cynomolgus monkeys. Rozanolixizumab, considered the most effective molecular format, dose-dependently and selectively reduced plasma IgG concentrations in an FcRn-transgenic mouse model (no effect on albumin). Intravenous (IV) rozanolixizumab dosing in cynomolgus monkeys demonstrated non-linear pharmacokinetics indicative of target-mediated drug disposition; single IV rozanolixizumab doses (30 mg/kg) in cynomolgus monkeys reduced plasma IgG concentration by 69% by Day 7 post-administration. Daily IV administration of rozanolixizumab (initial 30 mg/kg loading dose; 5 mg/kg daily thereafter) reduced plasma IgG concentrations in all cynomolgus monkeys, with low concentrations maintained throughout the treatment period (42 days). In a 13-week toxicology study in cynomolgus monkeys, supra-pharmacological subcutaneous and IV doses of rozanolixizumab (≤ 150 mg/kg every 3 days) were well tolerated, inducing sustained (but reversible) reductions in IgG concentrations by up to 85%, with no adverse events observed. We have demonstrated accelerated natural catabolism of IgG through inhibition of IgG:FcRn interactions in mice and cynomolgus monkeys. Inhibition of FcRn with rozanolixizumab may provide a novel therapeutic approach to reduce pathogenic IgG in human autoimmune disease. Rozanolixizumab is being investigated in patients with immune thrombocytopenia (NCT02718716) and myasthenia gravis (NCT03052751).


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunosupresores/química , Miastenia Gravis/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Receptores Fc/inmunología , Animales , Anticuerpos Monoclonales Humanizados/genética , Anticuerpos Monoclonales Humanizados/metabolismo , Ensayos Clínicos como Asunto , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunoglobulina G/sangre , Inmunosupresores/metabolismo , Macaca fascicularis , Ratones , Ratones Transgénicos , Unión Proteica , Receptores Fc/genética , Transgenes/genética
6.
MAbs ; 8(7): 1336-1346, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27315033

RESUMEN

We generated an anti-albumin antibody, CA645, to link its Fv domain to an antigen-binding fragment (Fab), thereby extending the serum half-life of the Fab. CA645 was demonstrated to bind human, cynomolgus, and mouse serum albumin with similar affinity (1-7 nM), and to bind human serum albumin (HSA) when it is in complex with common known ligands. Importantly for half-life extension, CA645 binds HSA with similar affinity within the physiologically relevant range of pH 5.0 - pH 7.4, and does not have a deleterious effect on the binding of HSA to neonatal Fc receptor (FcRn). A crystal structure of humanized CA645 Fab in complex with HSA was solved and showed that CA645 Fab binds to domain II of HSA. Superimposition with the crystal structure of FcRn bound to HSA confirmed that CA645 does not block HSA binding to FcRn. In mice, the serum half-life of humanized CA645 Fab is 84.2 h. This is a significant extension in comparison with < 1 h for a non-HSA binding CA645 Fab variant. The Fab-HSA structure was used to design a series of mutants with reduced affinity to investigate the correlation between the affinity for albumin and serum half-life. Reduction in the affinity for MSA by 144-fold from 2.2 nM to 316 nM had no effect on serum half-life. Strikingly, despite a reduction in affinity to 62 µM, an extension in serum half-life of 26.4 h was still obtained. CA645 Fab and the CA645 Fab-HSA complex have been deposited in the Protein Data Bank (PDB) with accession codes, 5FUZ and 5FUO, respectively.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/sangre , Región Variable de Inmunoglobulina/sangre , Albúmina Sérica/inmunología , Animales , Afinidad de Anticuerpos , Semivida , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/inmunología , Ratones
7.
Sci Transl Med ; 7(319): 319ra205, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26702093

RESUMEN

The lipid chaperone aP2/FABP4 has been implicated in the pathology of many immunometabolic diseases, including diabetes in humans, but aP2 has not yet been targeted for therapeutic applications. aP2 is not only an intracellular protein but also an active adipokine that contributes to hyperglycemia by promoting hepatic gluconeogenesis and interfering with peripheral insulin action. Serum aP2 levels are markedly elevated in mouse and human obesity and strongly correlate with metabolic complications. These observations raise the possibility of a new strategy to treat metabolic disease by targeting serum aP2 with a monoclonal antibody (mAb) to aP2. We evaluated mAbs to aP2 and identified one, CA33, that lowered fasting blood glucose, improved systemic glucose metabolism, increased systemic insulin sensitivity, and reduced fat mass and liver steatosis in obese mouse models. We examined the structure of the aP2-CA33 complex and resolved the target epitope by crystallographic studies in comparison to another mAb that lacked efficacy in vivo. In hyperinsulinemic-euglycemic clamp studies, we found that the antidiabetic effect of CA33 was predominantly linked to the regulation of hepatic glucose output and peripheral glucose utilization. The antibody had no effect in aP2-deficient mice, demonstrating its target specificity. We conclude that an aP2 mAb-mediated therapeutic constitutes a feasible approach for the treatment of diabetes.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Proteínas de Unión a Ácidos Grasos/inmunología , Tejido Adiposo/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Composición Corporal/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Dieta Alta en Grasa , Proteínas de Unión a Ácidos Grasos/química , Hígado Graso/complicaciones , Hígado Graso/patología , Glucosa/metabolismo , Humanos , Insulina/farmacología , Masculino , Metaboloma/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Obesos
8.
J Biol Chem ; 287(29): 24525-33, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22610095

RESUMEN

The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/química , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Células CHO , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cricetinae , Disulfuros , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Ingeniería de Proteínas , Estabilidad Proteica , Homología de Secuencia de Aminoácido
9.
Protein Eng Des Sel ; 20(5): 227-34, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17452434

RESUMEN

Antigen-binding fragments (Fab') of antibodies can be site specifically PEGylated at thiols using cysteine reactive PEG-maleimide conjugates. For therapeutic Fab'-PEG, conjugation with 40 kDa of PEG at a single hinge cysteine has been found to confer appropriate pharmacokinetic properties to enable infrequent dosing. Previous methods have activated the hinge cysteine using mildly reducing conditions in order to retain an intact interchain disulphide. We demonstrate that the final Fab-PEG product does not need to retain the interchain disulphide and also therefore that strongly reducing conditions can be used. This alternative approach results in PEGylation efficiencies of 88 and 94% for human and murine Fab, respectively. It also enables accurate and efficient site-specific multi-PEGylation. The use of the non-thiol reductant tris(2-carboxyethyl) phosphine combined with protein engineering enables us to demonstrate the mono-, di- and tri-PEGylation of Fab fragments with a range of PEG size. We present evidence that PEGylated and unPEGylated Fab' molecules that lack an interchain disulphide bond retain very high levels of chemical and thermal stability and normal performance in PK and efficacy models.


Asunto(s)
Disulfuros/química , Fragmentos Fab de Inmunoglobulinas/química , Polietilenglicoles/química , Ingeniería de Proteínas/métodos , Sustancias Reductoras/química , Secuencia de Aminoácidos , Animales , Cisteína/química , Humanos , Fragmentos Fab de Inmunoglobulinas/sangre , Ratones , Datos de Secuencia Molecular , Oxidación-Reducción , Fosfinas/química , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...