Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 28(24): 37004-37014, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33379782

RESUMEN

Freeform optics generating specific irradiance distributions have been used in various applications for some time now. While most freeform optics design algorithms assume point sources or perfectly collimated light, the search for algorithms for non-idealized light sources with finite spatial as well as angular extent is still ongoing. In this work, such an approach is presented where the resulting irradiance distribution of a freeform optical surface is calculated as a superposition of pinhole images generated by points on the optical surface. To compute the required arrangement of the pinhole images for a prescribed irradiance pattern, the expectation maximization algorithm from statistics is applied. The result is then combined with a ray-targeting approach for finding the shape of the corresponding freeform optical surface. At its current state, the approach is applicable to Gaussian input irradiances, single-sided freeform optics and for the paraxial case. An example freeform optical surface for laser material processing is shown and discussed demonstrating the performance and the limitations of the presented approach.

2.
Opt Lett ; 38(11): 1945-7, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23722798

RESUMEN

It was previously demonstrated by Bäuerle et al. [Opt. Express20, 14477 (2012)] that the computation of ray paths through the optical system (ray mapping) can be used to design multisurface freeform optical elements creating a prescribed irradiance pattern for a zero-étendue source. The procedure outlined there uses the heuristic step of reducing the ray mapping's curl to improve adherence to surface integrability criteria. This Letter formally derives a quantitative estimate for the limitations of this approach in the collimated case and shows the key factors influencing the quality of the final optics.

3.
Opt Express ; 21(9): 10563-71, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23669912

RESUMEN

More and more lighting applications require the design of dedicated optics to achieve a given radiant intensity or irradiance distribution. Freeform optics has the advantage of providing such a functionality with a compact design. It was previously demonstrated in [Bäuerle et al., Opt. Exp. 20, 14477-14485 (2012)] that the up-front computation of the light path through the optical system (ray mapping) provides a satisfactory approximation to the problem, and allows the design of multiple freeform surfaces in transmission or in reflection. This article presents one natural extension of this work by introducing an efficient optimization procedure based on the physics of the system. The procedure allows the design of multiple freeform surfaces and can render high resolution irradiance patterns, as demonstrated by several examples, in particular by a lens made of two freeform surfaces projecting a high resolution logo (530 × 160 pixels).


Asunto(s)
Lentes , Iluminación/instrumentación , Iluminación/métodos , Modelos Teóricos , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
4.
Opt Express ; 20(13): 14477-85, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22714509

RESUMEN

The design of freeform lenses and reflectors allows to achieve non-radially symmetric irradiance distributions whilst keeping the optical system compact. In the case of a point-like source, such as an LED, it is often desired to capture a wide angle of source light in order to increase optical efficiency. This generally results in strongly curved optics, requiring both lens surfaces to contribute to the total ray refraction, and thereby minimising Fresnel losses. In this article, we report on a new design algorithm for multiple freeform optical surfaces based on the theory of optimal mass transport that adresses these requirements and give an example of its application to a problem in general lighting.


Asunto(s)
Algoritmos , Luz , Fotometría/métodos , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...