Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 433(18): 167144, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34229012

RESUMEN

The EphA2 receptor is a promising drug target for cancer treatment, since EphA2 activation can inhibit metastasis and tumor progression. It has been recently described that the TYPE7 peptide activates EphA2 using a novel mechanism that involves binding to the single transmembrane domain of the receptor. TYPE7 is a conditional transmembrane (TM) ligand, which only inserts into membranes at neutral pH in the presence of the TM region of EphA2. However, how membrane interactions can activate EphA2 is not known. We systematically altered the sequence of TYPE7 to identify the binding motif used to activate EphA2. With the resulting six peptides, we performed biophysical and cell migration assays that identified a new potent peptide variant. We also performed a mutational screen that determined the helical interface that mediates dimerization of the TM domain of EphA2 in cells. These results, together with molecular dynamic simulations, allowed to elucidate the molecular mechanism that TYPE7 uses to activate EphA2, where the membrane peptide acts as a molecular clamp that wraps around the TM dimer of the receptor. We propose that this binding mode stabilizes the active conformation of EphA2. Our data, additionally, provide clues into the properties that TM ligands need to have in order to achieve activation of membrane receptors.


Asunto(s)
Melanoma/patología , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Receptor EphA2/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Movimiento Celular , Humanos , Ligandos , Melanoma/metabolismo , Proteínas de la Membrana/química , Membranas/química , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Receptor EphA2/química , Homología de Secuencia , Células Tumorales Cultivadas
2.
J Biol Chem ; 296: 100149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33277361

RESUMEN

The impact of the EphA2 receptor on cancer malignancy hinges on the two different ways it can be activated. EphA2 induces antioncogenic signaling after ligand binding, but ligand-independent activation of EphA2 is pro-oncogenic. It is believed that the transmembrane (TM) domain of EphA2 adopts two alternate conformations in the ligand-dependent and the ligand-independent states. However, it is poorly understood how the difference in TM helical crossing angles found in the two conformations impacts the activity and regulation of EphA2. We devised a method that uses hydrophobic matching to stabilize two conformations of a peptide comprising the EphA2 TM domain and a portion of the intracellular juxtamembrane (JM) segment. The two conformations exhibit different TM crossing angles, resembling the ligand-dependent and ligand-independent states. We developed a single-molecule technique using styrene maleic acid lipid particles to measure dimerization in membranes. We observed that the signaling lipid PIP2 promotes TM dimerization, but only in the small crossing angle state, which we propose corresponds to the ligand-independent conformation. In this state the two TMs are almost parallel, and the positively charged JM segments are expected to be close to each other, causing electrostatic repulsion. The mechanism PIP2 uses to promote dimerization might involve alleviating this repulsion due to its high density of negative charges. Our data reveal a conformational coupling between the TM and JM regions and suggest that PIP2 might directly exert a regulatory effect on EphA2 activation in cells that is specific to the ligand-independent conformation of the receptor.


Asunto(s)
Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Multimerización de Proteína , Receptor EphA2/química , Receptor EphA2/metabolismo , Sitios de Unión , Humanos , Unión Proteica , Conformación Proteica , Dominios Proteicos , Transducción de Señal
3.
J Biol Chem ; 295(7): 1792-1814, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31879273

RESUMEN

Single-pass membrane receptors contain extracellular domains that respond to external stimuli and transmit information to intracellular domains through a single transmembrane (TM) α-helix. Because membrane receptors have various roles in homeostasis, signaling malfunctions of these receptors can cause disease. Despite their importance, there is still much to be understood mechanistically about how single-pass receptors are activated. In general, single-pass receptors respond to extracellular stimuli via alterations in their oligomeric state. The details of this process are still the focus of intense study, and several lines of evidence indicate that the TM domain (TMD) of the receptor plays a central role. We discuss three major mechanistic hypotheses for receptor activation: ligand-induced dimerization, ligand-induced rotation, and receptor clustering. Recent observations suggest that receptors can use a combination of these activation mechanisms and that technical limitations can bias interpretation. Short peptides derived from receptor TMDs, which can be identified by screening or rationally developed on the basis of the structure or sequence of their targets, have provided critical insights into receptor function. Here, we explore recent evidence that, depending on the target receptor, TMD peptides cannot only inhibit but also activate target receptors and can accommodate novel, bifunctional designs. Furthermore, we call for more sharing of negative results to inform the TMD peptide field, which is rapidly transforming into a suite of unique tools with the potential for future therapeutics.


Asunto(s)
Integrinas/ultraestructura , Péptidos/genética , Receptores de Antígenos de Linfocitos T/química , Secuencia de Aminoácidos/genética , Receptores ErbB/química , Receptores ErbB/ultraestructura , Humanos , Integrinas/química , Péptidos/química , Conformación Proteica , Conformación Proteica en Hélice alfa/genética , Mapas de Interacción de Proteínas , Multimerización de Proteína , Receptores de Antígenos de Linfocitos T/ultraestructura , Transducción de Señal/genética
4.
Elife ; 72018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30222105

RESUMEN

Misregulation of the signaling axis formed by the receptor tyrosine kinase (RTK) EphA2 and its ligand, ephrinA1, causes aberrant cell-cell contacts that contribute to metastasis. Solid tumors are characterized by an acidic extracellular medium. We intend to take advantage of this tumor feature to design new molecules that specifically target tumors. We created a novel pH-dependent transmembrane peptide, TYPE7, by altering the sequence of the transmembrane domain of EphA2. TYPE7 is highly soluble and interacts with the surface of lipid membranes at neutral pH, while acidity triggers transmembrane insertion. TYPE7 binds to endogenous EphA2 and reduces Akt phosphorylation and cell migration as effectively as ephrinA1. Interestingly, we found large differences in juxtamembrane tyrosine phosphorylation and the extent of EphA2 clustering when comparing TYPE7 with activation by ephrinA1. This work shows that it is possible to design new pH-triggered membrane peptides to activate RTK and gain insights on its activation mechanism.


Asunto(s)
Efrina-A1/genética , Efrina-A2/genética , Neoplasias/genética , Péptidos/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Efrina-A1/química , Efrina-A2/química , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Neoplasias/tratamiento farmacológico , Péptidos/administración & dosificación , Péptidos/farmacología , Fosforilación , Dominios Proteicos/genética , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Receptor EphA2
5.
Biophys J ; 113(4): 869-879, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28834723

RESUMEN

The pH-low insertion peptide (pHLIP) is a leading peptide technology to target the extracellular acidosis that characterizes solid tumors. The pHLIP binds to lipid membranes, and responds to acidification by undergoing a coupled folding/membrane insertion process. In the final transmembrane state, the C terminus of pHLIP gets exposed to the cytoplasm of the target cell, providing a means to translocate membrane-impermeable drug cargoes across the plasma membrane of cancer cells. There exists a need to develop improved pHLIP variants to target tumors with greater efficiency. Characterization of such variants typically relies on determining the pK parameter, the pH midpoint of peptide insertion into the lipid bilayer. Here we report that the value of the pK can be strongly dependent on the method used for its determination. Membrane insertion of pHLIP involves at least four intermediate states, which are believed to be linked to the staggered titration of key acidic residues. We propose that some spectroscopic methods are influenced more heavily by specific membrane folding intermediates, and as a result yield different pK values. To address this potential problem, we have devised an assay to independently monitor the environment of the two termini of pHLIP. This approach provides insights into the conformation pHLIP adopts immediately before the establishment of the transmembrane configuration. Additionally, our data indicate that the membrane translocation of the C terminus of pHLIP, the folding step more directly relevant to drug delivery, occurs at more acidic pH values than previously considered. Consequently, such a pK difference could have substantial ramifications for assessing the translocation of drug cargoes conjugated to pHLIP.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Fenómenos Químicos , Conformación Proteica en Hélice alfa , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA