Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Urol Oncol ; 40(4): 161.e1-161.e7, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34465541

RESUMEN

PURPOSE: Robust prediction of progression on active surveillance (AS) for prostate cancer can allow for risk-adapted protocols. To date, models predicting progression on AS have invariably used traditional statistical approaches. We sought to evaluate whether a machine learning (ML) approach could improve prediction of progression on AS. PATIENTS AND METHODS: We performed a retrospective cohort study of patients diagnosed with very-low or low-risk prostate cancer between 1997 and 2016 and managed with AS at our institution. In the training set, we trained a traditional logistic regression (T-LR) classifier, and alternate ML classifiers (support vector machine, random forest, a fully connected artificial neural network, and ML-LR) to predict grade-progression. We evaluated model performance in the test set. The primary performance metric was the F1 score. RESULTS: Our cohort included 790 patients. With a median follow-up of 6.29 years, 234 developed grade-progression. In descending order, the F1 scores were: support vector machine 0.586 (95% CI 0.579 - 0.591), ML-LR 0.522 (95% CI 0.513 - 0.526), artificial neural network 0.392 (95% CI 0.379 - 0.396), random forest 0.376 (95% CI 0.364 - 0.380), and T-LR 0.182 (95% CI 0.151 - 0.185). All alternate ML models had a significantly higher F1 score than the T-LR model (all p <0.001). CONCLUSION: In our study, ML methods significantly outperformed T-LR in predicting progression on AS for prostate cancer. While our specific models require further validation, we anticipate that a ML approach will help produce robust prediction models that will facilitate individualized risk-stratification in prostate cancer AS.


Asunto(s)
Neoplasias de la Próstata , Espera Vigilante , Humanos , Modelos Logísticos , Aprendizaje Automático , Masculino , Neoplasias de la Próstata/diagnóstico , Estudios Retrospectivos
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3703-3706, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018805

RESUMEN

Epilepsy diagnosis through visual examination of interictal epileptiform discharges (IEDs) in scalp electroencephalogram (EEG) signals is a challenging problem. Deep learning methods can be an automated way to perform this task. In this work, we present a new approach based on convolutional neural network (CNN) to detect IEDs from EEGs automatically. The input to CNN is a combination of raw EEG and frequency sub-bands, namely delta, theta, alpha and, beta arranged as a vector for one-dimensional (1D) CNN or matrix for two-dimensional (2D) CNN. The proposed method is evaluated on 554 scalp EEGs. The database consists of 18,164 IEDs marked by two neurologists. Five-fold cross-validation was performed to assess the IED detectors. The resulting 1D CNN based IED detector with multiple sub-bands achieved a false positive rate per minute of 0.23 and a precision of 0.79 at 90% sensitivity. Further, the proposed system is evaluated on datasets from three other clinics, and the features extracted from CNN outputs could significantly discriminate (p-values <; 0.05) the EEGs with and without IEDs. We have proposed an optimized method with better performance than the literature that could aid clinicians to diagnose epilepsy expeditiously, and thereby devise proper treatment.


Asunto(s)
Aprendizaje Profundo , Epilepsia , Electroencefalografía , Epilepsia/diagnóstico , Humanos , Redes Neurales de la Computación , Cuero Cabelludo
4.
Artículo en Inglés | MEDLINE | ID: mdl-30440304

RESUMEN

Over and under-sedation are common in critically ill patients admitted to the Intensive Care Unit. Clinical assessments provide limited time resolution and are based on behavior rather than the brain itself. Existing brain monitors have been developed primarily for non-ICU settings. Here, we use a clinical dataset from 154 ICU patients in whom the Richmond Agitation-Sedation Score is assessed about every 2 hours. We develop a recurrent neural network (RNN) model to discriminate between deep vs. no sedation, trained end-to-end from raw EEG spectrograms without any feature extraction. We obtain an average area under the ROC of 0.8 on 10-fold cross validation across patients. Our RNN is able to provide reliable estimates of sedation levels consistently better compared to a feed-forward model with simple smoothing. Decomposing the prediction error in terms of sedatives reveals that patient-specific calibration for sedatives is expected to further improve sedation monitoring.


Asunto(s)
Encéfalo/fisiología , Unidades de Cuidados Intensivos , Anciano , Anestesia , Enfermedad Crítica , Femenino , Humanos , Hipnóticos y Sedantes , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico , Red Nerviosa , Estudios Prospectivos , Factores de Tiempo
5.
J Clin Neurophysiol ; 35(4): 279-294, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29979286

RESUMEN

Despite being first described over 50 years ago, periodic discharges continue to generate controversy as to whether they are always, sometimes, or never "ictal." Investigators and clinicians have proposed adjunctive markers to help clarify this distinction-in particular measures of perfusion and metabolism. Here, we review the growing number of neuroimaging studies using Fluorodeoxyglucose-PET, MRI diffusion, Magnetic resonance perfusion, Single Photon Emission Computed Tomography, and Magnetoencepgalography to gain further insight into the physiology and clinical significance of periodic discharges. To date, however, no definitive consensus exists regarding the features of periodic discharges that warrant treatment intensification. However, an emerging consilience among neuroimaging modalities suggests that periodic discharges can induce a hyperexcitatory state with associated hypermetabolism and hyperperfusion, which may result in local metabolic failure.


Asunto(s)
Encefalopatías/diagnóstico por imagen , Encefalopatías/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Electroencefalografía , Neuroimagen , Animales , Encefalopatías/terapia , Humanos , Convulsiones/diagnóstico por imagen , Convulsiones/fisiopatología , Convulsiones/terapia
6.
Neurology ; 85(18): 1604-13, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26296517

RESUMEN

OBJECTIVES: The aims of this study were to determine the etiology, clinical features, and predictors of outcome of new-onset refractory status epilepticus. METHODS: Retrospective review of patients with refractory status epilepticus without etiology identified within 48 hours of admission between January 1, 2008, and December 31, 2013, in 13 academic medical centers. The primary outcome measure was poor functional outcome at discharge (defined as a score >3 on the modified Rankin Scale). RESULTS: Of 130 cases, 67 (52%) remained cryptogenic. The most common identified etiologies were autoimmune (19%) and paraneoplastic (18%) encephalitis. Full data were available in 125 cases (62 cryptogenic). Poor outcome occurred in 77 of 125 cases (62%), and 28 (22%) died. Predictors of poor outcome included duration of status epilepticus, use of anesthetics, and medical complications. Among the 63 patients with available follow-up data (median 9 months), functional status improved in 36 (57%); 79% had good or fair outcome at last follow-up, but epilepsy developed in 37% with most survivors (92%) remaining on antiseizure medications. Immune therapies were used less frequently in cryptogenic cases, despite a comparable prevalence of inflammatory CSF changes. CONCLUSIONS: Autoimmune encephalitis is the most commonly identified cause of new-onset refractory status epilepticus, but half remain cryptogenic. Outcome at discharge is poor but improves during follow-up. Epilepsy develops in most cases. The role of anesthetics and immune therapies warrants further investigation.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Encefalitis por Herpes Simple/complicaciones , Encefalitis/complicaciones , Enfermedad de Hashimoto/complicaciones , Estado Epiléptico/etiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anestésicos/uso terapéutico , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Anticonvulsivantes/uso terapéutico , Autoanticuerpos/inmunología , Estudios de Cohortes , Encefalitis/diagnóstico , Encefalitis/inmunología , Encefalitis por Herpes Simple/diagnóstico , Femenino , Enfermedad de Hashimoto/diagnóstico , Enfermedad de Hashimoto/inmunología , Humanos , Tiempo de Internación , Masculino , Persona de Mediana Edad , Síndromes Paraneoplásicos del Sistema Nervioso/complicaciones , Síndromes Paraneoplásicos del Sistema Nervioso/diagnóstico , Síndromes Paraneoplásicos del Sistema Nervioso/inmunología , Canales de Potasio con Entrada de Voltaje/inmunología , Pronóstico , Estudios Retrospectivos , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/fisiopatología , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...