Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 1: 58, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-24252195

RESUMEN

BACKGROUND: Cobblestone lissencephaly is a severe neuronal migration disorder associated with congenital muscular dystrophies (CMD) such as Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama-type CMD. In these severe forms of dystroglycanopathy, the muscular dystrophy and other tissue pathology is caused by mutations in genes involved in O-linked glycosylation of alpha-dystroglycan. While cerebellar dysplasia is a common feature of dystroglycanopathy, its pathogenesis has not been thoroughly investigated. RESULTS: Here we evaluate the role of dystroglycan during cerebellar development. Brain-selective deletion of dystroglycan does not affect overall cerebellar growth, yet causes malformations associated with glia limitans disruptions and granule cell heterotopia that recapitulate phenotypes found in dystroglycanopathy patients. Cerebellar pathology in these mice is not evident until birth even though dystroglycan is lost during the second week of embryogenesis. The severity and spatial distribution of glia limitans disruption, Bergmann glia disorganization, and heterotopia exacerbate during postnatal development. Astrogliosis becomes prominent at these same sites by the time cerebellar development is complete. Interestingly, there is spatial heterogeneity in the glia limitans and granule neuron migration defects that spares the tips of lobules IV-V and VI. CONCLUSIONS: The full spectrum of developmental pathology is caused by loss of dystroglycan from Bergmann glia, as neither granule cell- nor Purkinje cell-specific deletion of dystroglycan results in similar pathology. These data illustrate the importance of dystroglycan function in radial/Bergmann glia, not neurons, for normal cerebellar histogenesis. The spatial heterogeneity of pathology suggests that the dependence on dystroglycan is not uniform.


Asunto(s)
Movimiento Celular/fisiología , Cerebelo/crecimiento & desarrollo , Cerebelo/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Animales , Membrana Basal/metabolismo , Bromodesoxiuridina , Cerebelo/ultraestructura , Distroglicanos/genética , Distroglicanos/metabolismo , Técnica del Anticuerpo Fluorescente , Gliosis/fisiopatología , Ratones Noqueados , Microscopía Electrónica , Neuroglía/ultraestructura
2.
J Neurosci ; 30(43): 14560-72, 2010 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-20980614

RESUMEN

Cobblestone (type II) lissencephaly and mental retardation are characteristic features of a subset of congenital muscular dystrophies that include Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama-type congenital muscular dystrophy. Although the majority of clinical cases are genetically undefined, several causative genes have been identified that encode known or putative glycosyltransferases in the biosynthetic pathway of dystroglycan. Here we test the effects of brain-specific deletion of dystroglycan, and show distinct functions for neuronal and glial dystroglycan. Deletion of dystroglycan in the whole brain produced glial/neuronal heterotopia resembling the cerebral cortex malformation in cobblestone lissencephaly. In wild-type mice, dystroglycan stabilizes the basement membrane of the glia limitans, thereby supporting the cortical infrastructure necessary for neuronal migration. This function depends on extracellular dystroglycan interactions, since the cerebral cortex developed normally in transgenic mice that lack the dystroglycan intracellular domain. Also, forebrain histogenesis was preserved in mice with neuron-specific deletion of dystroglycan, but hippocampal long-term potentiation was blunted, as is also the case in the Largemyd mouse, in which dystroglycan glycosylation is disrupted. Our findings provide genetic evidence that neuronal dystroglycan plays a role in synaptic plasticity and that glial dystroglycan is involved in forebrain development. Differences in dystroglycan glycosylation in distinct cell types of the CNS may contribute to the diversity of dystroglycan function in the CNS, as well as to the broad clinical spectrum of type II lissencephalies.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Distroglicanos/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Animales , Encéfalo/anomalías , Química Encefálica/genética , Química Encefálica/fisiología , Distroglicanos/genética , Distroglicanos/metabolismo , Electrofisiología , Potenciales Postsinápticos Excitadores/fisiología , Técnica del Anticuerpo Fluorescente , Genes myc/genética , Proteína Ácida Fibrilar de la Glía/genética , Hipocampo/fisiología , Hidrocefalia/genética , Hidrocefalia/patología , Proteínas de Filamentos Intermediarios/genética , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Nestina , Neuroglía/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Nature ; 418(6896): 422-5, 2002 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-12140559

RESUMEN

Fukuyama congenital muscular dystrophy (FCMD), muscle-eye-brain disease (MEB), and Walker-Warburg syndrome are congenital muscular dystrophies (CMDs) with associated developmental brain defects. Mutations reported in genes of FCMD and MEB patients suggest that the genes may be involved in protein glycosylation. Dystroglycan is a highly glycosylated component of the muscle dystrophin-glycoprotein complex that is also expressed in brain, where its function is unknown. Here we show that brain-selective deletion of dystroglycan in mice is sufficient to cause CMD-like brain malformations, including disarray of cerebral cortical layering, fusion of cerebral hemispheres and cerebellar folia, and aberrant migration of granule cells. Dystroglycan-null brain loses its high-affinity binding to the extracellular matrix protein laminin, and shows discontinuities in the pial surface basal lamina (glia limitans) that probably underlie the neuronal migration errors. Furthermore, mutant mice have severely blunted hippocampal long-term potentiation with electrophysiologic characterization indicating that dystroglycan might have a postsynaptic role in learning and memory. Our data strongly support the hypothesis that defects in dystroglycan are central to the pathogenesis of structural and functional brain abnormalities seen in CMD.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Proteínas del Citoesqueleto/metabolismo , Eliminación de Gen , Glicoproteínas de Membrana/metabolismo , Distrofias Musculares/congénito , Distrofias Musculares/genética , Animales , Encéfalo/anomalías , Encéfalo/fisiopatología , Movimiento Celular , Proteínas del Citoesqueleto/genética , Distroglicanos , Electrofisiología , Glicosilación , Hipocampo/anomalías , Hipocampo/fisiopatología , Laminina/metabolismo , Aprendizaje/fisiología , Potenciación a Largo Plazo , Glicoproteínas de Membrana/genética , Memoria/fisiología , Ratones , Ratones Noqueados , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Especificidad de Órganos , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...