Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Ecol Evol ; 13(12): e10739, 2023 Dec.
Article En | MEDLINE | ID: mdl-38094153

Forests contribute to numerous ecosystem functions and services and contain a large proportion of terrestrial biodiversity, but they are being negatively impaced by anthropogenic activities. Forests that have never been clear-cut and have old growth characteristics, termed "near-natural," often harbor different and richer species assemblages than managed forests. Alternative management strategies may be able to balance the needs of biodiversity with the demands of forestry, but evaluation efforts are limited by the challenges of measuring biodiversity. Species richness is frequently used as a simple measure of biodiversity, but research indicates that it may not adequately capture community-level changes. Alternatively, trait-based measures of biodiversity may prove to be useful, but research is lacking. In this paper, we use a large dataset that includes 339 obligate saproxylic beetle species collected over a decade in the boreal region throughout southern Norway to: (1) establish if there is a difference in beetle community composition between near-natural and managed forests; and (2) determine which measures of beetle biodiversity best indicate forest naturalness. We arranged the sites in an ordination space and tested for differences in community composition between these forest types. We also tested different measures of biodiversity to determine which were the most predictive of forest naturalness. We found a clear difference in community composition between near-natural and managed forests. Additionally, three measures of biodiversity were most predictive of forest naturalness: proportional abundance of predators, community weighted mean (CWM) of wing length, and CWM of body roundness. The probability that a forest was near-natural increased with the proportional abundance of predators but decreased with CWM wing length and body roundness. Although species richness was higher in near-natural forests, the effect was not significant. Overall, our findings underscore the conservation value of near-natural forests and highlight the potential of several measures of biodiversity for determining forest quality.

2.
Ecol Evol ; 12(3): e8709, 2022 Mar.
Article En | MEDLINE | ID: mdl-35342614

Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.

3.
PLoS One ; 16(3): e0248756, 2021.
Article En | MEDLINE | ID: mdl-33735317

Veteran hollow trees are keystone structures in ecosystems and provide important habitat for a diverse set of organisms, many of which are involved in the process of decomposition. Since veteran trees are 'islands' of high biodiversity, they provide a unique system in which to study the relationship between biodiversity and decomposition of wood. We tested this relationship with a balanced experiential design, where we quantified the taxonomic and functional diversity of beetles directly involved in the process of decomposing wood, and measured the decomposition of experimentally added bundles of small diameter wood around 20 veteran trees and 20 nearby young trees in southern Norway. We found that the diversity (both taxonomic and functional) of wood-decomposing beetles was significantly higher around the veteran trees, and beetle communities around veteran trees consisted of species with a greater preference for larger diameter wood. We extracted few beetles from the experimentally added wood bundles, regardless of the tree type that they were placed near, but decomposition rates were significantly lower around veteran trees. We speculate that slower decomposition rates around veteran trees could have been a result of a greater diversity of competing fungi, which has been found to decrease decay rates. Veteran trees provide an ecological legacy within anthropogenic landscapes, enhance biodiversity and influence wood decomposition. Actions to protect veteran trees are urgently needed in order to save these valuable organisms and their associated biodiversity.


Biodiversity , Coleoptera/physiology , Trees/physiology , Wood/physiology , Animals , Norway , Quercus/physiology , Regression Analysis , Species Specificity
4.
Sci Rep ; 10(1): 18485, 2020 10 28.
Article En | MEDLINE | ID: mdl-33116276

Predation of invertebrate pest by natural enemies is a critical contribution of nature to people, because invertebrate pests cause a vast amount of economic damage and pesticides use has many long-term costs. Veteran trees are keystone structures and hotspots for biodiversity, and are a potential source of natural enemies. To explore this, we used a balanced experimental design where we measured predatory beetle diversity and attack marks on three colors of artificial caterpillars placed around 20 veteran oaks and 20 nearby young oaks, in Southern Norway. We predicted that around the veteran oaks there would be a greater diversity of predatory beetles and more invertebrate attacks on artificial caterpillars. Sampling for predatory beetles was conducted in summer 2017 and 2018, and invertebrate attacks were measured in 2018. We found support for the predictions: diversity of predatory beetles was higher around veteran trees and there were more arthropod attack marks on artificial caterpillars placed around veteran trees. Our results indicated that veteran trees are a source of natural enemies. Valuing and protecting veteran trees and their communities is an essential step towards a more sustainable system of management that has the possibility of promoting both the wellbeing of people and biodiversity.


Biodiversity , Coleoptera/physiology , Predatory Behavior , Trees , Animals , Conservation of Natural Resources , Ecology , Lepidoptera , Linear Models , Norway , Pesticides , Quercus
5.
Ecol Evol ; 10(2): 819-831, 2020 Jan.
Article En | MEDLINE | ID: mdl-32015846

Veteran hollow oaks (Quercus spp.) are keystone structures hosting high insect diversity but are declining in numbers due to intensification of land use and the abandonment of traditional management. The loss of this vital habitat is resulting in a reduction of biodiversity, and this likely has consequences for ecosystem functioning, especially if functional diversity is reduced. A considerable amount of research has been done on predictors of beetle taxonomic diversity in veteran oaks, but predictors of functional diversity have remained largely unexplored. The aim of this study was to establish whether the features and surroundings of veteran oaks are related to functional diversity within three functional groups of beetles (decomposers, predators, and flower visitors) and determine whether species richness and functional diversity within the groups are dependent on the same predictors. Sampling was carried out intermittently between 2004 and 2011 on 61 veteran oaks in Southern Norway. Of the 876 beetle species that were collected, 359 were determined to be decomposers, 284 were predators, and 85 were flower visitors. Species richness and functional diversity in all groups were consistently higher in traps mounted on veteran oaks in forests than in open landscapes. However, additional predictors differed between groups, and for species richness and functional diversity. Decomposer species richness responded to tree vitality, while functional diversity responded to habitat connectivity, predator species richness responded to regrowth of shrubs while functional diversity responded to tree circumference, and flower visitor richness and functional diversity did not respond to any additional predictors. Previous studies have found that the features and surroundings of veteran oaks are important for conservation of taxonomic diversity, and the results from this study indicate that they are also important for functional diversity within multiple functional groups.

...