Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7: 43106, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28220894

RESUMEN

In the mammalian brain the ubiquitous tyrosine kinase, C-Src, undergoes splicing to insert short sequences in the SH3 domain to yield N1- and N2-Src. We and others have previously shown that the N-Srcs have altered substrate specificity and kinase activity compared to C-Src. However, the exact functions of the N-Srcs are unknown and it is likely that N-Src signalling events have been misattributed to C-Src because they cannot be distinguished by conventional Src inhibitors that target the kinase domain. By screening a peptide phage display library, we discovered a novel ligand (PDN1) that targets the unique SH3 domain of N1-Src and inhibits N1-Src in cells. In cultured neurons, PDN1 fused to a fluorescent protein inhibited neurite outgrowth, an effect that was mimicked by shRNA targeting the N1-Src microexon. PDN1 also inhibited L1-CAM-dependent neurite elongation in cerebellar granule neurons, a pathway previously shown to be disrupted in Src-/- mice. PDN1 therefore represents a novel tool for distinguishing the functions of N1-Src and C-Src in neurons and is a starting point for the development of a small molecule inhibitor of N1-Src.


Asunto(s)
Molécula L1 de Adhesión de Célula Nerviosa/fisiología , Neuritas/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Empalme Alternativo , Animales , Proteína Tirosina Quinasa CSK , Ligandos , Ratones , Neuritas/fisiología , Dominios Homologos src , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética
2.
New Phytol ; 213(2): 727-738, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27716936

RESUMEN

We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Núcleo Celular/metabolismo , Cloroplastos/genética , Ritmo Circadiano/efectos de la radiación , Luz , Factor sigma/metabolismo , Transducción de Señal/efectos de la radiación , Transcripción Genética , Arabidopsis/efectos de la radiación , Núcleo Celular/efectos de la radiación , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Criptocromos/metabolismo , Genoma de Plastidios , Luciferasas/metabolismo , Fotorreceptores de Plantas/metabolismo , Fotosíntesis/efectos de la radiación , Fitocromo/metabolismo
3.
FEBS Lett ; 589(15): 1995-2000, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26026271

RESUMEN

N2-Src is a poorly understood neuronal splice variant of the ubiquitous C-Src tyrosine kinase, containing a 17 amino acid insert in its Src homology 3 (SH3) domain. To characterise the properties of N2-Src we directly compared its SH3 domain specificity and kinase activity with C- and N1-Src in vitro. N2- and N1-Src had a similar low affinity for the phosphorylation of substrates containing canonical C-Src SH3 ligands and synaptophysin, an established neuronal substrate for C-Src. N2-Src also had a higher basal kinase activity than N1- and C-Src in vitro and in cells, which could be explained by weakened intramolecular interactions. Therefore, N2-Src is a highly active kinase that is likely to phosphorylate alternative substrates to C-Src in the brain.


Asunto(s)
Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Empalme del ARN , Dominios Homologos src , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Ligandos , Datos de Secuencia Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas pp60(c-src)/química , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Ratas , Homología de Secuencia de Aminoácido
4.
Science ; 339(6125): 1316-9, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23493713

RESUMEN

Circadian timekeeping in plants increases photosynthesis and productivity. There are circadian oscillations in the abundance of many chloroplast-encoded transcripts, but it is not known how the circadian clock regulates chloroplast transcription or the photosynthetic apparatus. We show that, in Arabidopsis, nuclear-encoded SIGMA FACTOR5 (SIG5) controls circadian rhythms of transcription of several chloroplast genes, revealing one pathway by which the nuclear-encoded circadian oscillator controls rhythms of chloroplast gene expression. We also show that SIG5 mediates the circadian gating of light input to a chloroplast-encoded gene. We have identified an evolutionarily conserved mechanism that communicates circadian timing information between organelles with distinct genetic systems and have established a new level of integration between eukaryotic circadian clocks and organelles of endosymbiotic origin.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Cloroplastos/genética , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Factor sigma/metabolismo , Transporte Activo de Núcleo Celular , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Factor sigma/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA