Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 66
1.
Trends Mol Med ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38744580

Hormesis is a phenomenon whereby low-level stress can improve cellular, organ, or organismal fitness in response to a subsequent similar or other stress insult. Whereas hormesis is thought to contribute to the fitness benefits arising from symbiotic host-microbe interactions, the putative benefits of hormesis in host-pathogen interactions have yet to be explored. Hormetic responses have nonetheless been reported in experimental models of infection, a common feature of which is regulation of host mitochondrial function. We propose that these mitohormetic responses could be harnessed therapeutically to limit the severity of infectious diseases.

2.
Free Radic Biol Med ; 204: 151-160, 2023 08 01.
Article En | MEDLINE | ID: mdl-37105418

Ischemia-reperfusion injury is a critical liver condition during hepatic transplantation, trauma, or shock. An ischemic deprivation of antioxidants and energy characterizes liver injury in such cases. In the face of increased reactive oxygen production, hepatocytes are vulnerable to the reperfusion driving ROS generation and multiple cell-death mechanisms. In this study, we investigate the importance of hydrogen sulfide as part of the liver's antioxidant pool and the therapeutic potency of the hydrogen sulfide donors sodium sulfide (Na2S, fast releasing) and sodium thiosulfate (STS, Na2S2O3, slow releasing). The mitoprotection and toxicity of STS and Na2S were investigated on isolated mitochondria and a liver perfusion oxidative stress model by adding text-butyl hydroperoxide and hydrogen sulfide donors. The respiratory capacity of mitochondria, hepatocellular released LDH, glutathione, and lipid-peroxide levels were quantified. In addition, wild-type and cystathionine-γ-lyase knockout mice were subjected to warm selective ischemia-reperfusion injury by clamping the main inflow for 1 h followed by reperfusion of 1 or 24 h. A subset of animals was treated with STS shortly before reperfusion. Glutathione, plasma ALT, and lipid-peroxide levels were investigated alongside mitochondrial changes in structure (electron microscopy) and function (intravital microscopy). Liver tissue necrosis quantified 24 h after reperfusion indicates the net effects of the treatment on the organ. STS refuels and protects the endogenous antioxidant pool during liver ischemia-reperfusion injury. In addition, STS-mediated ROS scavenging significantly reduced lipid peroxidation and mitochondrial damage, resulting in better molecular and histopathological preservation of the liver tissue architecture. STS prevents tissue damage in liver ischemia-reperfusion injury by increasing the liver's antioxidant pool, thereby protecting mitochondrial integrity.


Chemical and Drug Induced Liver Injury, Chronic , Hydrogen Sulfide , Reperfusion Injury , Mice , Animals , Antioxidants/pharmacology , Reactive Oxygen Species , Liver/pathology , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Ischemia/pathology , Glutathione , Peroxides , Reperfusion , Lipids
3.
Br J Pharmacol ; 180(4): 441-458, 2023 02.
Article En | MEDLINE | ID: mdl-36245399

BACKGROUND AND PURPOSE: Prostaglandin E2 is considered a major mediator of inflammatory pain, by acting on neuronal Gs protein-coupled EP2 and EP4 receptors. However, the neuronal EP3 receptor, colocalized with EP2 and EP4 receptor, is Gi protein-coupled and antagonizes the pronociceptive prostaglandin E2 effect. Here, we investigated the cellular signalling mechanisms by which the EP3 receptor reduces EP2 and EP4 receptor-evoked pronociceptive effects in sensory neurons. EXPERIMENTAL APPROACH: Experiments were performed on isolated and cultured dorsal root ganglion (DRG) neurons from wild type, phosphoinositide 3-kinase γ (PI3Kγ)-/- , and PI3Kγkinase dead (KD)/KD mice. For subtype-specific stimulations, we used specific EP2, EP3, and EP4 receptor agonists from ONO Pharmaceuticals. As a functional readout, we recorded TTX-resistant sodium currents in patch-clamp experiments. Western blots were used to investigate the activation of intracellular signalling pathways. EP4 receptor internalization was measured using immunocytochemistry. KEY RESULTS: Different pathways mediate the inhibition of EP2 and EP4 receptor-dependent pronociceptive effects by EP3 receptor stimulation. Inhibition of EP2 receptor-evoked pronociceptive effect critically depends on the kinase-independent function of the signalling protein PI3Kγ, and adenosine monophosphate activated protein kinase (AMPK) is involved. By contrast, inhibition of EP4 receptor-evoked pronociceptive effect is independent on PI3Kγ and mediated through activation of G protein-coupled receptor kinase 2 (GRK2), which enhances the internalization of the EP4 receptor after ligand binding. CONCLUSION AND IMPLICATIONS: Activation of neuronal PI3Kγ, AMPK, and GRK2 by EP3 receptor activation limits cAMP-dependent pain generation by prostaglandin E2 . These new insights hold the potential for a novel approach in pain therapy.


AMP-Activated Protein Kinases , Prostaglandins , Animals , Mice , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases , Dinoprostone/pharmacology , Dinoprostone/metabolism , Receptors, Prostaglandin E, EP4 Subtype , Receptors, Prostaglandin E, EP2 Subtype , Sensory Receptor Cells/metabolism , Pain , Analgesics , Receptors, Prostaglandin E, EP3 Subtype/metabolism
5.
Intensive Care Med Exp ; 9(1): 63, 2021 Dec 29.
Article En | MEDLINE | ID: mdl-34964952

In critically ill patients with sepsis, there is a grave lack of effective treatment options to address the illness-defining inappropriate host response. Currently, treatment is limited to source control and supportive care, albeit with imminent approval of immune modulating drugs for COVID-19-associated lung failure the potential of host-directed strategies appears on the horizon. We suggest expanding the concept of sepsis by incorporating infectious stress within the general stress response of the cell to define sepsis as an illness state characterized by allostatic overload and failing adaptive responses along with biotic (pathogen) and abiotic (e.g., malnutrition) environmental stress factors. This would allow conceptualizing the failing organismic responses to pathogens in sepsis with an ancient response pattern depending on the energy state of cells and organs towards other environmental stressors in general. Hence, the present review aims to decipher the heuristic value of a biological definition of sepsis as a failing stress response. These considerations may motivate a better understanding of the processes underlying "host defense failure" on the organismic, organ, cell and molecular levels.

6.
Crit Care ; 25(1): 368, 2021 Oct 21.
Article En | MEDLINE | ID: mdl-34674733

BACKGROUND: Fever and hypothermia have been observed in septic patients. Their influence on prognosis is subject to ongoing debates. METHODS: We did a secondary analysis of a large clinical dataset from a quality improvement trial. A binary logistic regression model was calculated to assess the association of the thermal response with outcome and a multinomial regression model to assess factors associated with fever or hypothermia. RESULTS: With 6542 analyzable cases we observed a bimodal temperature response characterized by fever or hypothermia, normothermia was rare. Hypothermia and high fever were both associated with higher lactate values. Hypothermia was associated with higher mortality, but this association was reduced after adjustment for other risk factors. Age, community-acquired sepsis, lower BMI and lower outside temperatures were associated with hypothermia while bacteremia and higher procalcitonin values were associated with high fever. CONCLUSIONS: Septic patients show either a hypothermic or a fever response. Whether hypothermia is a maladaptive response, as indicated by the higher mortality in hypothermic patients, or an adaptive response in patients with limited metabolic reserves under colder environmental conditions, remains an open question. Trial registration The original trial whose dataset was analyzed was registered at ClinicalTrials.gov (NCT01187134) on August 23, 2010, the first patient was included on July 1, 2011.


Fever , Hypothermia , Sepsis , Fever/complications , Humans , Hypothermia/complications , Prognosis , Sepsis/therapy , Temperature
7.
Cells ; 10(10)2021 09 24.
Article En | MEDLINE | ID: mdl-34685514

(1) Background: Rapid microglial proliferation contributes to the complex responses of the innate immune system in the brain to various neuroinflammatory stimuli. Here, we investigated the regulatory function of phosphoinositide 3-kinase γ (PI3Kγ) and reactive oxygen species (ROS) for rapid proliferation of murine microglia induced by LPS and ATP. (2) Methods: PI3Kγ knockout mice (PI3Kγ KO), mice expressing catalytically inactive PI3Kγ (PI3Kγ KD) and wild-type mice were assessed for microglial proliferation using an in vivo wound healing assay. Additionally, primary microglia derived from newborn wild-type, PI3Kγ KO and PI3Kγ KD mice were used to analyze PI3Kγ effects on proliferation and cell viability, senescence and cellular and mitochondrial ROS production; the consequences of ROS production for proliferation and cell viability after LPS or ATP stimulation were studied using genetic and pharmacologic approaches. (3) Results: Mice with a loss of lipid kinase activity showed impaired proliferation of microglia. The prerequisite of induced microglial proliferation and cell viability appeared to be PI3Kγ-mediated induction of ROS production. (4) Conclusions: The lipid kinase activity of PI3Kγ plays a crucial role for microglial proliferation and cell viability after acute inflammatory activation.


Cell Proliferation/physiology , Cell Survival/physiology , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Microglia/metabolism , Animals , Brain/metabolism , Cell Proliferation/genetics , Cell Survival/genetics , Class Ib Phosphatidylinositol 3-Kinase/genetics , Cyclic AMP/metabolism , Mice, Knockout , Neurogenesis/physiology , Reactive Oxygen Species/metabolism
8.
EMBO Mol Med ; 13(10): e14436, 2021 10 07.
Article En | MEDLINE | ID: mdl-34472699

Jaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection. To exploit the therapeutic potential of PI3Kγ inhibition in sepsis, a targeted approach to deliver drugs to hepatic parenchymal cells without compromising other cells, in particular immune cells, seems warranted. Here, we demonstrate that nanocarriers functionalized through DY-635, a fluorescent polymethine dye, and a ligand of organic anion transporters can selectively deliver therapeutics to hepatic parenchymal cells. Applying this strategy to a murine model of sepsis, we observed the PI3Kγ-dependent restoration of biliary canalicular architecture, maintained excretory liver function, and improved survival without impairing host defense mechanisms. This strategy carries the potential to expand targeted nanomedicines to disease entities with systemic inflammation and concomitantly impaired barrier functionality.


Liver Diseases , Sepsis , Animals , Mice , Neutrophil Infiltration , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors , Sepsis/drug therapy
9.
Int J Mol Sci ; 22(5)2021 Mar 04.
Article En | MEDLINE | ID: mdl-33806610

Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it.


Class Ib Phosphatidylinositol 3-Kinase/immunology , Immunity, Innate/immunology , Immunologic Memory/immunology , Adenosine Triphosphate/immunology , Animals , Glycolysis/immunology , Immune Tolerance/immunology , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/immunology , Oxygen Consumption/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Signal Transduction/immunology
10.
Dose Response ; 19(4): 15593258211056835, 2021.
Article En | MEDLINE | ID: mdl-34987333

This commentary describes the origin and the main results of experimental work on adaptive stress responses at the university town Jena in Germany. These cooperative research activities exemplify the heuristic power of the hormesis phenomenon.

11.
Mol Ther ; 29(1): 338-346, 2021 01 06.
Article En | MEDLINE | ID: mdl-32966769

Complement factor C5a was originally identified as a powerful promoter of inflammation through activation of the C5a receptor 1 (C5ar1). Recent evidence suggests involvement of C5a not only in pro- but also in anti-inflammatory signaling. The present study aims to unveil the role of C5ar1 as potential therapeutic target in a murine sepsis model. Our study discloses a significantly increased survival in models of mild to moderate but not severe sepsis of C5ar1-deficient mice. The decreased mortality of C5ar1-deficient mice is accompanied by improved pathogen clearance and largely preserved liver function. C5ar1-deficient mice exhibited a significantly increased production of the pro-inflammatory mediator interferon-γ (IFN-γ) and a decreased production of the anti-inflammatory cytokine interleukin-10 (IL-10). Together, these data uncover C5a signaling as a mediator of immunosuppressive processes during sepsis and describe the C5ar1 and related changes of the IFN-γ to IL-10 ratio as markers for the immunological (dys)function accompanying sepsis.


Biomarkers , Disease Susceptibility/immunology , Immunomodulation , Receptor, Anaphylatoxin C5a/metabolism , Sepsis/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Immunity, Innate , Immunomodulation/drug effects , Inflammation Mediators/metabolism , Mice , Mice, Knockout , Molecular Targeted Therapy , Phenotype , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/genetics , Sepsis/diagnosis , Sepsis/drug therapy , Sepsis/etiology
12.
Front Immunol ; 11: 546415, 2020.
Article En | MEDLINE | ID: mdl-33101271

Microglia, the innate immune cells of the central nervous system, feature adaptive immune memory with implications for brain homeostasis and pathologies. However, factors involved in the emergence and regulation of these opposing responses in microglia have not been fully addressed. Recently, we showed that microglia from the newborn brain display features of trained immunity and immune tolerance after repeated contact with pathogens in a dose-dependent manner. Here, we evaluate the impact of developmental stage on adaptive immune responses of brain microglia after repeated challenge with ultra-low (1 fg/ml) and high (100 ng/ml) doses of the endotoxin LPS in vitro. We find that priming of naïve microglia derived from newborn but not mature and aged murine brain with ultra-low LPS significantly increased levels of pro-inflammatory mediators TNF-α, IL-6, IL-1ß, MMP-9, and iNOS as well as neurotrophic factors indicating induction of trained immunity (p < 0.05). In contrast, stimulation with high doses of LPS led to a robust downregulation of pro-inflammatory cytokines and iNOS independent of the developmental state, indicating induced immune tolerance. Furthermore, high-dose priming with LPS upregulated anti-inflammatory mediators IL-10, Arg-1, TGF- ß, MSR1, and IL-4 in newborn microglia (p < 0.05). Our data indicate pronounced plasticity of the immune response of neonate microglia compared with microglia derived from mature and aged mouse brain. Induced trained immunity after priming with ultra-low LPS doses may be responsible for enhanced neuro-inflammatory susceptibility of immature brain. In contrast, the immunosuppressed phenotype following high-dose LPS priming might be prone to attenuate excessive damage after recurrent systemic inflammation.


Brain/immunology , Host-Pathogen Interactions/immunology , Immunologic Memory , Microglia/immunology , Age Factors , Animals , Biomarkers , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cell Survival/immunology , Cytokines/metabolism , Energy Metabolism , Lactic Acid/metabolism , Lipopolysaccharides/immunology , Male , Mice , Microglia/metabolism , Nitric Oxide Synthase Type II/metabolism , Reactive Oxygen Species/metabolism
13.
J Neuroinflammation ; 17(1): 292, 2020 Oct 07.
Article En | MEDLINE | ID: mdl-33028343

BACKGROUND: Sepsis-associated encephalopathy (SAE) is an early and frequent event of infection-induced systemic inflammatory response syndrome. Phosphoinositide 3-kinase γ (PI3Kγ) is linked to neuroinflammation and inflammation-related microglial activity. In homeotherms, variations in ambient temperature (Ta) outside the thermoneutral zone lead to thermoregulatory responses, mainly driven by a gradually increasing sympathetic activity, and may affect disease severity. We hypothesized that thermoregulatory response to hypothermia (reduced Ta) aggravates SAE in PI3Kγ-dependent manner. METHODS: Experiments were performed in wild-type, PI3Kγ knockout, and PI3Kγ kinase-dead mice, which were kept at neutral (30 ± 0.5 °C) or moderately lowered (26 ± 0.5 °C) Ta. Mice were exposed to lipopolysaccharide (LPS, 10 µg/g, from Escherichia coli serotype 055:B5, single intraperitoneal injection)-evoked systemic inflammatory response (SIR) and monitored 24 h for thermoregulatory response and blood-brain barrier integrity. Primary microglial cells and brain tissue derived from treated mice were analyzed for inflammatory responses and related cell functions. Comparisons between groups were made with one-way or two-way analysis of variance, as appropriate. Post hoc comparisons were made with the Holm-Sidak test or t tests with Bonferroni's correction for adjustments of multiple comparisons. Data not following normal distribution was tested with Kruskal-Wallis test followed by Dunn's multiple comparisons test. RESULTS: We show that a moderate reduction of ambient temperature triggers enhanced hypothermia of mice undergoing LPS-induced systemic inflammation by aggravated SAE. PI3Kγ deficiency enhances blood-brain barrier injury and upregulation of matrix metalloproteinases (MMPs) as well as an impaired microglial phagocytic activity. CONCLUSIONS: Thermoregulatory adaptation in response to ambient temperatures below the thermoneutral range exacerbates LPS-induced blood-brain barrier injury and neuroinflammation. PI3Kγ serves a protective role in suppressing release of MMPs, maintaining microglial motility and reinforcing phagocytosis leading to improved brain tissue integrity. Thus, preclinical research targeting severe brain inflammation responses is seriously biased when basic physiological prerequisites of mammal species such as preferred ambient temperature are ignored.


Body Temperature Regulation/physiology , Class Ib Phosphatidylinositol 3-Kinase/deficiency , Lipopolysaccharides/toxicity , Sepsis-Associated Encephalopathy/enzymology , Sepsis-Associated Encephalopathy/physiopathology , Animals , Animals, Newborn , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/enzymology , Blood-Brain Barrier/physiopathology , Body Temperature/drug effects , Body Temperature/physiology , Body Temperature Regulation/drug effects , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sepsis-Associated Encephalopathy/chemically induced
14.
Am J Cardiovasc Dis ; 10(2): 62-71, 2020.
Article En | MEDLINE | ID: mdl-32685264

Non-contagious diseases such as atherosclerosis, diabetes, cardiovascular disease, cancer, chronic respiratory diseases, and mental disorders hold responsibility for major health losses worldwide. Atherosclerosis was found to be the leading cause of deaths due to the major consequences, such as cardiovascular disease, stroke, ischemic heart disease, myocardial infarction, and others. The number of patients with atherosclerosis increases with every passing year. If treatment is not started on time, every second patient dies within 10 years. Moreover, the disease leads to persistent disability of patients, most of whom are of active working age. Atherosclerosis is a metabolic disorder characterized by hyperlipidemia and chronic inflammation. Although this disease annually kills a huge number of people, patients are now offered various therapeutic techniques, however, with different efficiencies. The scientific community is working to develop more effective means for treatment and precaution of the disease, regardless of the difficulties in understanding the causes of the health problem and the characteristics of its course. There are numerous strategies in the treatment and prevention of atherosclerosis, focusing on different aspects of the disease, such as inflammation, lipid metabolism alterations, or others, but none of them, unfortunately, is absolutely effective. In this review, we focused on the treatment approaches aimed at remedy the disruptions of lipid metabolism that are currently used in clinical practice.

15.
Biomedicines ; 8(7)2020 Jul 10.
Article En | MEDLINE | ID: mdl-32664349

Atherosclerosis is a serious disorder, with numerous potential complications such as cardiovascular disease, ischemic stroke, and myocardial infarction. The origin of atherosclerosis is related to chronic inflammation, lipid metabolism alterations, and oxidative stress. Inflammasomes are the cytoplasmic multiprotein complex triggering the activation of inflammatory response. NLRP3 inflammasomes have a specific activation pathway that involves numerous stimuli, including a wide range of PAMPs and DAMPs. Recent studies of atherosclerotic pathology are focused on the mitochondria that appear to be a promising target for therapeutic approach development. Mitochondria are the main source of reactive oxygen species (ROS) associated with oxidative stress. It was previously shown that NLRP3 inflammasome activation results in mitochondrial damage, but the exact mechanisms of this need to be specified. In this review, we focused on the features of NLRP3 inflammasomes and their significance for atherosclerosis, especially concerning mitochondria.

16.
Int J Mol Sci ; 21(6)2020 Mar 18.
Article En | MEDLINE | ID: mdl-32197550

Atherosclerosis is a multifactorial chronic disease that affects large arteries and may lead to fatal consequences. According to current understanding, inflammation and lipid accumulation are the two key mechanisms of atherosclerosis development. Animal models based on genetically modified mice have been developed to investigate these aspects. One such model is low-density lipoprotein (LDL) receptor knockout (KO) mice (ldlr-/-), which are characterized by a moderate increase of plasma LDL cholesterol levels. Another widely used genetically modified mouse strain is apolipoprotein-E KO mice (apoE-/-) that lacks the primary lipoprotein required for the uptake of lipoproteins through the hepatic receptors, leading to even greater plasma cholesterol increase than in ldlr-/- mice. These and other animal models allowed for conducting genetic studies, such as genome-wide association studies, microarrays, and genotyping methods, which helped identifying more than 100 mutations that contribute to atherosclerosis development. However, translation of the results obtained in animal models for human situations was slow and challenging. At the same time, genetic studies conducted in humans were limited by low sample sizes and high heterogeneity in predictive subclinical phenotypes. In this review, we summarize the current knowledge on the use of KO mice for identification of genes implicated in atherosclerosis and provide a list of genes involved in atherosclerosis-associated inflammatory pathways and their brief characteristics. Moreover, we discuss the approaches for candidate gene search in animals and humans and discuss the progress made in the field of epigenetic studies that appear to be promising for identification of novel biomarkers and therapeutic targets.


Atherosclerosis , Dyslipidemias , Gene Expression Regulation , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Biomarkers/metabolism , Disease Models, Animal , Dyslipidemias/genetics , Dyslipidemias/metabolism , Humans , Mice , Mice, Knockout
17.
Cells ; 9(3)2020 03 01.
Article En | MEDLINE | ID: mdl-32121535

Atherosclerosis is associated with acute cardiovascular conditions, such as ischemic heart disease, myocardial infarction, and stroke, and is the leading cause of morbidity and mortality worldwide. Our understanding of atherosclerosis and the processes triggering its initiation is constantly improving, and, during the last few decades, many pathological processes related to this disease have been investigated in detail. For example, atherosclerosis has been considered to be a chronic inflammation triggered by the injury of the arterial wall. However, recent works showed that atherogenesis is a more complex process involving not only the immune system, but also resident cells of the vessel wall, genetic factors, altered hemodynamics, and changes in lipid metabolism. In this review, we focus on foam cells that are crucial for atherosclerosis lesion formation. It has been demonstrated that the formation of foam cells is induced by modified low-density lipoprotein (LDL). The beneficial effects of the majority of therapeutic strategies with generalized action, such as the use of anti-inflammatory drugs or antioxidants, were not confirmed by clinical studies. However, the experimental therapies targeting certain stages of atherosclerosis, among which are lipid accumulation, were shown to be more effective. This emphasizes the relevance of future detailed investigation of atherogenesis and the importance of new therapies development.


Atherosclerosis/immunology , Cardiovascular Diseases/immunology , Foam Cells/immunology , Cardiovascular Diseases/pathology , Humans , Lipoproteins, LDL/metabolism , Signal Transduction
18.
Int J Mol Sci ; 21(3)2020 Jan 27.
Article En | MEDLINE | ID: mdl-32012706

Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL. It was found that most of the identified master regulators were related to the regulation of the inflammatory immune response, but not to lipid metabolism. A possible explanation for this unexpected result is a stimulation of the phagocytic activity of macrophages by modified LDL particle associates that have a relatively large size. In the current study, we investigated gene regulation in macrophages using transcriptome analysis to test the hypothesis that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. We identified genes that were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads (inert phagocytosis stimulators). Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. The obtained results indicated that pro-inflammatory response to phagocytosis stimulation precedes the accumulation of intracellular lipids and possibly contributes to the formation of foam cells. In this way, the currently recognized hypothesis that the accumulation of lipids triggers the pro-inflammatory response was not confirmed. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. Additionally, the knock-down effect of five master regulators, such as IL15, EIF2AK3, F2RL1, TSPYL2, and ANXA1, on intracellular lipid accumulation was tested. We knocked down these genes in primary macrophages derived from human monocytes. The addition of atherogenic naturally occurring LDL caused a significant accumulation of cholesterol in the control cells. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages. The knock-down of the ANXA1 gene caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. The results obtained allowed us to explain in which way the inflammatory response and the accumulation of cholesterol are related confirming our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response.


Foam Cells/metabolism , Foam Cells/pathology , Lipoproteins, LDL/metabolism , Phagocytosis , Biomarkers , Foam Cells/immunology , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Immunity, Innate , Lipid Metabolism , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Oxidation-Reduction , Phagocytosis/genetics , Phagocytosis/immunology , Signal Transduction , Transcriptome
19.
Front Immunol ; 10: 2492, 2019.
Article En | MEDLINE | ID: mdl-31781091

Trained immunity and immune tolerance have been identified as long-term response patterns of the innate immune system. The causes of these opposing reactions remain elusive. Here, we report about differential inflammatory responses of microglial cells derived from neonatal mouse brain to increasing doses of the endotoxin LPS. Prolonged priming with ultra-low LPS doses provokes trained immunity, i.e., increased production of pro-inflammatory mediators in comparison to the unprimed control. In contrast, priming with high doses of LPS induces immune tolerance, implying decreased production of inflammatory mediators and pronounced release of anti-inflammatory cytokines. Investigation of the signaling processes and cell functions involved in these memory-like immune responses reveals the essential role of phosphoinositide 3-kinase γ (PI3Kγ), one of the phosphoinositide 3-kinase species highly expressed in innate immune cells. Together, our data suggest profound influence of preceding contacts with pathogens on the immune response of microglia. The impact of these interactions-trained immunity or immune tolerance-appears to be shaped by pathogen dose.


Class Ib Phosphatidylinositol 3-Kinase/immunology , Microglia/enzymology , Microglia/immunology , Animals , Animals, Newborn , Brain/cytology , Brain/enzymology , Brain/immunology , Cells, Cultured , Class Ib Phosphatidylinositol 3-Kinase/deficiency , Class Ib Phosphatidylinositol 3-Kinase/genetics , Cytokines/metabolism , Immune Tolerance/drug effects , Immunity, Innate/drug effects , Immunologic Memory/drug effects , Immunologic Memory/physiology , Inflammation Mediators/metabolism , Lipopolysaccharides/administration & dosage , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects
20.
Front Pharmacol ; 10: 725, 2019.
Article En | MEDLINE | ID: mdl-31316385

Inflammation is one of the key processes in the pathogenesis of atherosclerosis. Numerous studies are focused on the local inflammatory processes associated with atherosclerotic plaque initiation and progression. However, changes in the activation state of circulating monocytes, the main components of the innate immunity, may precede the local events. In this article, we discuss tolerance, which results in decreased ability of monocytes to be activated by pathogens and other stimuli, and training, the ability of monocyte to potentiate the response to pathological stimuli, and their relation to atherosclerosis. We also present previously unpublished results of the experiments that our group performed with monocytes/macrophages isolated from atherosclerosis patients. Our data allow assuming the existence of relationship between the formation of monocyte training and the degree of atherosclerosis progression. The suppression of trained immunity ex vivo seems to be a perspective model for searching anti-atherogenic drugs.

...