Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Psychoneuroendocrinology ; 146: 105945, 2022 Dec.
Article En | MEDLINE | ID: mdl-36183622

Post-traumatic stress disorder (PTSD) is characterized by the co-existence of a persistent strong memory of the traumatic experience and amnesia for the peritraumatic context. Most animal models, however, fail to account for the contextual amnesia which is considered to play a critical role in the etiology of PTSD intrusive memories. It is also unclear how aging affects PTSD-like memory. Glucocorticoids alter the formation and retention of fear-associated memory. Here, we investigated whether a deficiency of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) (an intracellular glucocorticoid generating enzyme) and aging modulates fear conditioning and PTSD-like memory in mice. We first measured memory in 6 months and 24 months old 11ß-HSD1 deficient (HSD1 KO) and wildtype (WT) mice following paired tone-shock fear conditioning. Then, separate groups of mice were exposed to restraint stress immediately after unpaired tone-shock contextual fear conditioning. Compared with young controls, aged WT mice exhibited enhanced auditory cued fear memory, but contextual fear memory was not different. Contextual fear memory retention was attenuated in both young and aged HSD1 KO mice. In contrast, auditory cued fear memory was reduced 24 h after training only in aged HSD1 KO mice. When fear conditioned with stress, WT mice displayed PTSD-like memory (i.e., increased fear to tone not predictive of shock and reduced fear to 'aversive' conditioning context); this was unchanged with aging. In contrast, young HSD1 KO mice fear conditioned with stress showed normal fear memory (i.e., increased fear response to conditioning context), as observed in WT mice fear conditioned alone. While aged HSD1 KO mice fear conditioned with stress also displayed normal contextual fear memory, the fear response to the 'safe' tone remained. Thus, a deficiency of 11ß-HSD1 protects against both amnesia for the conditioning context and hypermnesia for a salient tone in young adult mice but only contextual amnesia is prevented in aged mice. These results suggest that brain 11ß-HSD1 generated glucocorticoids make a significant contribution to fear conditioning and PTSD-like memory. 11ß-HSD1 inhibition may be useful in prevention and/or treatment of PTSD.

2.
Psychoneuroendocrinology ; 89: 13-22, 2018 03.
Article En | MEDLINE | ID: mdl-29306773

Chronic exposure to stress during midlife associates with subsequent age-related cognitive decline and may increase the vulnerability to develop psychiatric conditions. Increased hypothalamic-pituitary-adrenal (HPA) axis activity has been implicated in pathogenesis though any causative role for glucocorticoids is unestablished. This study investigated the contribution of local glucocorticoid regeneration by the intracellular enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), in persisting midlife stress-induced behavioral effects in mice. Middle-aged (10 months old) 11ß-HSD1-deficient mice and wild-type congenic controls were randomly assigned to 28 days of chronic unpredictable stress or left undisturbed (non-stressed). All mice underwent behavioral testing at the end of the stress/non-stress period and again 6-7 months later. Chronic stress impaired spatial memory in middle-aged wild-type mice. The effects, involving a wide spectrum of behavioral modalities, persisted for 6-7 months after cessation of stress into early senescence. Enduring effects after midlife stress included impaired spatial memory, enhanced contextual fear memory, impaired fear extinction, heightened anxiety, depressive-like behavior, as well as reduced hippocampal glucocorticoid receptor mRNA expression. In contrast, 11ß-HSD1 deficient mice resisted both immediate and enduring effects of chronic stress, despite similar stress-induced increases in systemic glucocorticoid activity during midlife stress. In conclusion, chronic stress in midlife exerts persisting effects leading to cognitive and affective dysfunction in old age via mechanisms that depend, at least in part, on brain glucocorticoids generated locally by 11ß-HSD1. This finding supports selective 11ß-HSD1 inhibition as a novel therapeutic target to ameliorate the long-term consequences of stress-related psychiatric disorders in midlife.


11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Affect/physiology , Stress, Psychological/physiopathology , Animals , Corticosterone/metabolism , Fear/physiology , Glucocorticoids/metabolism , Hippocampus/metabolism , Hypothalamo-Hypophyseal System/metabolism , Male , Memory/physiology , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Pituitary-Adrenal System/metabolism , Spatial Memory/physiology
3.
Nat Commun ; 6: 7066, 2015 May 13.
Article En | MEDLINE | ID: mdl-25967870

Forebrain neurons have weak intrinsic antioxidant defences compared with astrocytes, but the molecular basis and purpose of this is poorly understood. We show that early in mouse cortical neuronal development in vitro and in vivo, expression of the master-regulator of antioxidant genes, transcription factor NF-E2-related-factor-2 (Nrf2), is repressed by epigenetic inactivation of its promoter. Consequently, in contrast to astrocytes or young neurons, maturing neurons possess negligible Nrf2-dependent antioxidant defences, and exhibit no transcriptional responses to Nrf2 activators, or to ablation of Nrf2's inhibitor Keap1. Neuronal Nrf2 inactivation seems to be required for proper development: in maturing neurons, ectopic Nrf2 expression inhibits neurite outgrowth and aborization, and electrophysiological maturation, including synaptogenesis. These defects arise because Nrf2 activity buffers neuronal redox status, inhibiting maturation processes dependent on redox-sensitive JNK and Wnt pathways. Thus, developmental epigenetic Nrf2 repression weakens neuronal antioxidant defences but is necessary to create an environment that supports neuronal development.


Antioxidants/metabolism , Cerebral Cortex/cytology , Epigenesis, Genetic/physiology , Gene Expression Regulation, Developmental/physiology , NF-E2-Related Factor 2/metabolism , Neurons/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cerebral Cortex/embryology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Electrophysiological Phenomena , Kelch-Like ECH-Associated Protein 1 , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics
4.
Neurobiol Aging ; 36(1): 334-43, 2015 Jan.
Article En | MEDLINE | ID: mdl-25109766

11Beta-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) locally amplifies active glucocorticoids within specific tissues including in brain. In the hippocampus, 11ß-HSD1 messenger RNA increases with aging. Here, we report significantly greater increases in intrahippocampal corticosterone (CORT) levels in aged wild-type (WT) mice during the acquisition and retrieval trials in a Y-maze than age-matched 11ß-HSD1(-/-) mice, corresponding to impaired and intact spatial memory, respectively. Acute stress applied to young WT mice led to increases in intrahippocampal CORT levels similar to the effects of aging and impaired retrieval of spatial memory. 11ß-HSD1(-/-) mice resisted the stress-induced memory impairment. Pharmacologic inhibition of 11ß-HSD1 abolished increases in intrahippocampal CORT levels during the Y-maze trials and prevented spatial memory impairments in aged WT mice. These data provide the first in vivo evidence that dynamic increases in hippocampal 11ß-HSD1 regenerated CORT levels during learning and retrieval play a key role in age- and stress-associated impairments of spatial memory.


11-beta-Hydroxysteroid Dehydrogenase Type 1/physiology , Aging/psychology , Glucocorticoids/metabolism , Hippocampus/metabolism , Spatial Memory/physiology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Aging/genetics , Aging/metabolism , Animals , Male , Maze Learning/physiology , Memory Disorders/drug therapy , Memory Disorders/genetics , Mice, Inbred C57BL , Molecular Targeted Therapy , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , RNA, Messenger/metabolism , Stress, Psychological/psychology , Thiophenes/pharmacology , Thiophenes/therapeutic use
5.
Neuropharmacology ; 91: 71-6, 2015 Apr.
Article En | MEDLINE | ID: mdl-25497454

High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11ß-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11ß-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11ß-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals.


11-beta-Hydroxysteroid Dehydrogenase Type 1/physiology , Fear/physiology , Memory/physiology , Spatial Memory/physiology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Age Factors , Animals , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Corticosterone/blood , Cross-Over Studies , Fear/drug effects , Male , Memory/drug effects , Mice , Mice, Inbred C57BL , Pyrazoles/pharmacology , Spatial Memory/drug effects , Thiophenes/pharmacology
...