Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892205

RESUMEN

Understanding the factors which control endothelial cell (EC) function and angiogenesis is crucial for developing the horse as a disease model, but equine ECs remain poorly studied. In this study, we have optimised methods for the isolation and culture of equine aortic endothelial cells (EAoECs) and characterised their angiogenic functions in vitro. Mechanical dissociation, followed by magnetic purification using an anti-VE-cadherin antibody, resulted in EC-enriched cultures suitable for further study. Fibroblast growth factor 2 (FGF2) increased the EAoEC proliferation rate and stimulated scratch wound closure and tube formation by EAoECs on the extracellular matrix. Pharmacological inhibitors of FGF receptor 1 (FGFR1) (SU5402) or mitogen-activated protein kinase (MEK) (PD184352) blocked FGF2-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and functional responses, suggesting that these are dependent on FGFR1/MEK-ERK signalling. In marked contrast, vascular endothelial growth factor-A (VEGF-A) had no effect on EAoEC proliferation, migration, or tubulogenesis and did not promote ERK1/2 phosphorylation, indicating a lack of sensitivity to this classical pro-angiogenic growth factor. Gene expression analysis showed that unlike human ECs, FGFR1 is expressed by EAoECs at a much higher level than both VEGF receptor (VEGFR)1 and VEGFR2. These results suggest a predominant role for FGF2 versus VEGF-A in controlling the angiogenic functions of equine ECs. Collectively, our novel data provide a sound basis for studying angiogenic processes in horses and lay the foundations for comparative studies of EC biology in horses versus humans.


Asunto(s)
Proliferación Celular , Células Endoteliales , Factor 2 de Crecimiento de Fibroblastos , Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular , Animales , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Caballos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Proliferación Celular/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosforilación/efectos de los fármacos
2.
J Neuroimmunol ; 391: 578363, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728929

RESUMEN

Neurological diseases with a neurodegenerative component have been associated with alterations in the cerebrovasculature. At the anatomical level, these are centred around changes in cerebral blood flow and vessel organisation. At the molecular level, there is extensive expression of cellular adhesion molecules and increased release of pro-inflammatory mediators. Together, these has been found to negatively impact blood-brain barrier integrity. Systemic inflammation has been found to accelerate and exacerbate endothelial dysfunction, neuroinflammation and degeneration. Here, we review the role of cerebrovasculature dysfunction in neurodegenerative disease and discuss the potential contribution of intermittent pro-inflammatory systemic disease in causing endothelial pathology, highlighting a possible mechanism that may allow broad-spectrum therapeutic targeting in the future.


Asunto(s)
Endotelio Vascular , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Animales , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Endotelio Vascular/patología , Inflamación , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Enfermedades Neuroinflamatorias/tratamiento farmacológico
3.
Bone ; 176: 116868, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37549801

RESUMEN

Extracellular pyrophosphate (PPi) is well known for its fundamental role as a physiochemical mineralisation inhibitor. However, information about its direct actions on bone cells remains limited. This study shows that PPi decreased osteoclast formation and resorptive activity by ≤50 %. These inhibitory actions were associated with reduced expression of genes involved in osteoclastogenesis (Tnfrsf11a, Dcstamp) and bone resorption (Ctsk, Car2, Acp5). In osteoblasts, PPi present for the entire (0-21 days) or latter stages of culture (7-21/14-21 days) decreased bone mineralisation by ≤95 %. However, PPi present for the differentiation phase only (0-7/0-14 days) increased bone formation (≤70 %). Prolonged treatment with PPi resulted in earlier matrix deposition and increased soluble collagen levels (≤2.3-fold). Expression of osteoblast (RUNX2, Bglap) and early osteocyte (E11, Dmp1) genes along with mineralisation inhibitors (Spp1, Mgp) was increased by PPi (≤3-fold). PPi levels are regulated by tissue non-specific alkaline phosphatase (TNAP) and ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). PPi reduced NPP1 expression in both cell types whereas TNAP expression (≤2.5-fold) and activity (≤35 %) were increased in osteoblasts. Breakdown of extracellular ATP by NPP1 represents a key source of PPi. ATP release from osteoclasts and osteoblasts was decreased ≤60 % by PPi and by a selective TNAP inhibitor (CAS496014-12-2). Pertussis toxin, which prevents Gαi subunit activation, was used to investigate whether G-protein coupled receptor (GPCR) signalling mediates the effects of PPi. The actions of PPi on bone mineralisation, collagen production, ATP release, gene/protein expression and osteoclast formation were abolished or attenuated by pertussis toxin. Together these findings show that PPi, modulates differentiation, function and gene expression in osteoblasts and osteoclasts. The ability of PPi to alter ATP release and NPP1/TNAP expression and activity indicates that cells can detect PPi levels and respond accordingly. Our data also raise the possibility that some actions of PPi on bone cells could be mediated by a Gαi-linked GPCR.


Asunto(s)
Difosfatos , Osteoclastos , Osteoclastos/metabolismo , Difosfatos/farmacología , Toxina del Pertussis/metabolismo , Toxina del Pertussis/farmacología , Osteoblastos/metabolismo , Colágeno/metabolismo , Adenosina Trifosfato/metabolismo , Fosfatasa Alcalina/metabolismo
4.
Methods Mol Biol ; 2475: 197-204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35451758

RESUMEN

Angiogenesis is essential for wound healing and regeneration and plays a significant role in several pathologies including cancer and atherosclerosis. In vitro assays offer simple and powerful tools for investigating the regulation of the angiogenic functions of primary endothelial cells (ECs) before moving to in vivo studies. The classic in vitro two-dimensional angiogenesis assay utilizes Basement Membrane Extract (BME) to study the differentiation and sprouting of ECs over a 24-h period. The protocol described here details a thin layer BME adaptation of the angiogenesis assay requiring significantly less BME and carried out in 96-well plates, allowing for a larger data yield at a greatly reduced cost, while maintaining the robustness of an assay used extensively over the past three decades.


Asunto(s)
Neovascularización Patológica , Neovascularización Fisiológica , Bioensayo , Diferenciación Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Fisiológica/fisiología
5.
Methods Mol Biol ; 2475: 223-228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35451761

RESUMEN

Endothelial cell proliferation rate is an important indicator of vascular health. Being able to detect the rate of endothelial cell proliferation, or cell cycle disturbances after intervention is a valuable tool for analysing any beneficial or detrimental effects of treatments in vitro. Here, we describe a straightforward flow cytometric-based method of proliferation and cell cycle tracking that can be performed on human endothelial cells in culture over several days.


Asunto(s)
Células Endoteliales , Ciclo Celular , División Celular , Proliferación Celular , Citometría de Flujo/métodos , Humanos
6.
J Cell Physiol ; 237(1): 1070-1086, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34658034

RESUMEN

Arterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H2 S) and glutathione (GSH) from its deacetylation to l-cysteine. This study found that NAC exerts divergent effects in vitro, increasing osteoblast differentiation and bone formation by up to 5.5-fold but reducing vascular smooth muscle cell (VSMC) calcification and cell death by up to 80%. In vivo, NAC reduced AMC in a site-specific manner by 25% but had no effect on the bone. The actions of l-cysteine and H2 S mimicked those of NAC; however, the effects of H2 S were much less efficacious than NAC and l-cysteine. Pharmacological inhibition of H2 S-generating enzymes did not alter the actions of NAC or l-cysteine; endogenous production of H2 S was also unaffected. In contrast, NAC and l-cysteine increased GSH levels in calcifying VSMCs and osteoblasts by up to 3-fold. This suggests that the beneficial actions of NAC are likely to be mediated via the breakdown of l-cysteine and the subsequent GSH generation. Together, these data show that while the molecular mechanisms driving the actions of NAC appear similar, the downstream effects on cell function differ significantly between osteoblasts and calcifying VSMCs. The ability of NAC to exert these differential actions further supports the notion that there are differences between the development of pathological AMC and physiological bone formation. NAC could represent a therapeutic option for treating AMC without exerting negative effects on bone.


Asunto(s)
Acetilcisteína , Sulfuro de Hidrógeno , Acetilcisteína/farmacología , Arterias/metabolismo , Glutatión/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Osteoblastos/metabolismo , Osteogénesis
7.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499110

RESUMEN

Patients harbouring mutations in genes encoding C-type natriuretic peptide (CNP; NPPC) or its receptor guanylyl cyclase B (GC-B, NPR2) suffer from severe growth phenotypes; loss-of-function mutations cause achondroplasia, whereas gain-of-function mutations cause skeletal overgrowth. Although most of the effects of CNP/GC-B on growth are mediated directly on bone, evidence suggests the natriuretic peptides may also affect anterior pituitary control of growth. Our previous studies described the expression of NPPC and NPR2 in a range of human pituitary tumours, normal human pituitary, and normal fetal human pituitary. However, the natriuretic peptide system in somatotropes has not been extensively explored. Here, we examine the expression and function of the CNP/GC-B system in rat GH3 somatolactotrope cell line and pituitary tumours from a cohort of feline hypersomatotropism (HST; acromegaly) patients. Using multiplex RT-qPCR, all three natriuretic peptides and their receptors were detected in GH3 cells. The expression of Nppc was significantly enhanced following treatment with either 100 nM TRH or 10 µM forskolin, yet only Npr1 expression was sensitive to forskolin stimulation; the effects of forskolin and TRH on Nppc expression were PKA- and MAPK-dependent, respectively. CNP stimulation of GH3 somatolactotropes significantly inhibited Esr1, Insr and Lepr expression, but dramatically enhanced cFos expression at the same time point. Oestrogen treatment significantly enhanced expression of Nppa, Nppc, Npr1, and Npr2 in GH3 somatolactotropes, but inhibited CNP-stimulated cGMP accumulation. Finally, transcripts for all three natriuretic peptides and receptors were expressed in feline pituitary tumours from patients with HST. NPPC expression was negatively correlated with pituitary tumour volume and SSTR5 expression, but positively correlated with D2R and GHR expression. Collectively, these data provide mechanisms that control expression and function of CNP in somatolactotrope cells, and identify putative transcriptional targets for CNP action in somatotropes.


Asunto(s)
Mutación , Péptido Natriurético Tipo-C/metabolismo , Neoplasias Hipofisarias/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Acromegalia/metabolismo , Animales , Gatos , Línea Celular , Colforsina/farmacología , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Estrógenos/metabolismo , Femenino , Masculino , Fenotipo , Hipófisis/metabolismo , Ratas , Ratas Wistar , Hormona Liberadora de Tirotropina/farmacología
9.
Purinergic Signal ; 15(3): 315-326, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31338672

RESUMEN

Arterial medial calcification (AMC) has been associated with phenotypic changes in vascular smooth muscle cells (VSMCs) that reportedly makes them more osteoblast-like. Previous work has shown that ATP/UTP can inhibit AMC directly via P2 receptors and indirectly by NPP1-mediated hydrolysis to produce the mineralisation inhibitor, pyrophosphate (PPi). This study investigated the role of P2X receptors in the inhibitory effects of extracellular nucleotides on VSMC calcification. We found that Bz-ATP, α,ß-meATP and ß,γ-meATP inhibited calcification by up to 100%. Culture in a high-phosphate medium (2 mM) was associated with increased VSMC death and apoptosis; treatment with Bz-ATP, α,ß-meATP and ß,γ-meATP reduced apoptosis to levels seen in non-calcifying cells. Calcification was also associated with alterations in the protein levels of VSMC (e.g. SM22α and SMA) and osteoblast-associated (e.g. Runx2 and osteopontin) markers; Bz-ATP, α,ß-meATP and ß,γ-meATP attenuated these changes in protein expression. Long-term culture with Bz-ATP, α,ß-meATP and ß,γ-meATP resulted in lower extracellular ATP levels and an increased rate of ATP breakdown. P2X receptor antagonists failed to prevent the inhibitory effects of these analogues suggesting that they act via P2X receptor-independent mechanisms. In agreement, the breakdown products of α,ß-meATP and ß,γ-meATP (α,ß-meADP and methylene diphosphonate, respectively) also dose-dependently inhibited VSMC calcification. Furthermore, the actions of Bz-ATP, α,ß-meATP and ß,γ-meATP were unchanged in VSMCs isolated from NPP1-knockout mice, suggesting that the functional effects of these compounds do not involve NPP1-mediated generation of PPi. Together, these results indicate that the inhibitory effects of ATP analogues on VSMC calcification and apoptosis in vitro may be mediated, at least in part, by mechanisms that are independent of purinergic signalling and PPi.


Asunto(s)
Adenosina Trifosfato/farmacología , Calcinosis/patología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Adenosina Trifosfato/análogos & derivados , Animales , Calcinosis/metabolismo , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Receptores Purinérgicos P2/metabolismo
10.
PLoS One ; 13(8): e0202577, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30138414

RESUMEN

Chronic kidney disease (CKD) is common in both geriatric cats and aging humans, and is pathologically characterised by chronic tubulointerstitial inflammation and fibrosis in both species. Cats with CKD may represent a spontaneously occurring, non-rodent animal model of human disease, however little is known of feline renal cell biology. In other species, TGF-ß1 signalling in the proximal tubular epithelium is thought to play a key role in the initiation and progression of renal fibrosis. In this study, we first aimed to isolate and characterise feline proximal tubular epithelial cells (FPTEC), comparing them to human primary renal epithelial cells (HREC) and the human proximal tubular cell line HK-2. Secondly, we aimed to examine and compare the effect of human recombinant TGF-ß1 on cell proliferation, pro-apoptotic signalling and genes associated with epithelial-to-mesenchymal transition (EMT) in feline and human renal epithelial cells. FPTEC were successfully isolated from cadaverous feline renal tissue, and demonstrated a marker protein expression profile identical to that of HREC and HK-2. Exposure to TGF-ß1 (0-10 ng/ml) induced a concentration-dependent loss of epithelial morphology and alterations in gene expression consistent with the occurrence of partial EMT in all cell types. This was associated with transcription of downstream pro-fibrotic mediators, growth arrest in FPTEC and HREC (but not HK-2), and increased apoptotic signalling at high concentrations of TGF- ß1. These effects were inhibited by the ALK5 (TGF-ß1RI) antagonist SB431542 (5 µM), suggesting they are mediated via the ALK5/TGF-ß1RII receptor complex. Taken together, these results suggest that TGF-ß1 may be involved in epithelial cell dedifferentiation, growth arrest and apoptosis in feline CKD as in human disease, and that cats may be a useful, naturally occurring model of human CKD.


Asunto(s)
Fibrosis/genética , Inflamación/genética , Riñón/fisiopatología , Insuficiencia Renal Crónica/genética , Factor de Crecimiento Transformador beta1/genética , Animales , Benzamidas/administración & dosificación , Gatos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Desdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Dioxoles/administración & dosificación , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis/fisiopatología , Humanos , Inflamación/fisiopatología , Riñón/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/fisiopatología , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Insuficiencia Renal Crónica/fisiopatología , Transducción de Señal , Factor de Crecimiento Transformador beta1/administración & dosificación , Sistema Urinario/fisiopatología
11.
Sci Rep ; 8(1): 6271, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29674687

RESUMEN

Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1ß-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs.


Asunto(s)
Adenilato Quinasa/metabolismo , Celecoxib/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Endotelio Vascular/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Endotelio Vascular/citología , Endotelio Vascular/enzimología , Endotelio Vascular/metabolismo , Inducción Enzimática , Hemo-Oxigenasa 1/biosíntesis , Células Endoteliales de la Vena Umbilical Humana , Humanos , FN-kappa B/antagonistas & inhibidores , Fosforilación , Factor de Necrosis Tumoral alfa/metabolismo
12.
Antioxid Redox Signal ; 28(2): 110-130, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28793782

RESUMEN

AIMS: Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells. RESULTS: Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting, gene silencing of different NADPH oxidases (NOXs), and their regulatory cosubunits by small interfering RNA (siRNA) transfection, and experiments with inhibitors of the sugar transporter glucose transporter 1 (GLUT1) were utilized to demonstrate that dRP acts intracellularly by directly activating the endothelial NOX2 complex, but not NOX4. Increased reactive oxygen species generation in response to NOX2 activity leads to redox-dependent activation of the transcription factor nuclear factor kappa B (NF-κB), which, in turn, induces vascular endothelial growth factor receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, gene silencing by siRNA, and antibody-based receptor inhibition, we demonstrate that the activation of NF-κB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The upregulation of VEGFR2 and NOX2-dependent stimulation of angiogenesis by dRP were confirmed in excisional wound and Matrigel plug vascularization assays in vivo using NOX2-/- mice. INNOVATION: For the first time, we demonstrate that dRP acts intracellularly and stimulates superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex. CONCLUSIONS: This study describes a novel molecular mechanism underlying the proangiogenic activity of dRP, which involves the sequential activation of NOX2 and NF-κB and upregulation of VEGFR2. Antioxid. Redox Signal. 28, 110-130.


Asunto(s)
NADPH Oxidasa 2/metabolismo , FN-kappa B/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Ribosamonofosfatos/farmacología , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
J Cell Physiol ; 233(4): 3230-3243, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28976001

RESUMEN

Arterial medial calcification (AMC) is thought to share some outward similarities to skeletal mineralization and has been associated with the transdifferentiation of vascular smooth muscle cells (VSMCs) to an osteoblast-like phenotype. ATP and UTP have previously been shown to inhibit bone mineralization. This investigation compared the effects of extracellular nucleotides on calcification in VSMCs with those seen in osteoblasts. ATP, UTP and the ubiquitous mineralization inhibitor, pyrophosphate (PPi ), dose dependently inhibited VSMC calcification by ≤85%. Culture of VSMCs in calcifying conditions was associated with an increase in apoptosis; treatment with ATP, UTP, and PPi reduced apoptosis to levels seen in non-calcifying cells. Extracellular nucleotides had no effect on osteoblast viability. Basal alkaline phosphatase (TNAP) activity was over 100-fold higher in osteoblasts than VSMCs. ATP and UTP reduced osteoblast TNAP activity (≤50%) but stimulated VSMC TNAP activity (≤88%). The effects of extracellular nucleotides on VSMC calcification, cell viability and TNAP activity were unchanged by deletion or inhibition of the P2Y2 receptor. Conversely, the actions of ATP/UTP on bone mineralization and TNAP activity were attenuated in osteoblasts lacking the P2Y2 receptor. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) hydrolyses ATP and UTP to produce PPi . In both VSMCs and osteoblasts, deletion of NPP1 blunted the inhibitory effects of extracellular nucleotides suggesting involvement of P2 receptor independent pathways. Our results show that although the overall functional effect of extracellular nucleotides on AMC and bone mineralization is similar there are clear differences in the cellular mechanisms mediating these actions.


Asunto(s)
Calcificación Fisiológica , Espacio Extracelular/metabolismo , Nucleótidos/farmacología , Túnica Media/patología , Calcificación Vascular/patología , Adenosina Trifosfato/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Difosfatos/farmacología , Ratones , Modelos Biológicos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Hidrolasas Diéster Fosfóricas/deficiencia , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/deficiencia , Pirofosfatasas/metabolismo , Receptores Purinérgicos P2/metabolismo , Uridina Trifosfato/farmacología
14.
Cell Tissue Res ; 369(3): 567-578, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28451751

RESUMEN

The natriuretic peptides, Atrial-, B-type and C-type natriuretric peptides (ANP, BNP, CNP), are regulators of many endocrine tissues and exert their effects predominantly through the activation of their specific guanylyl cyclase receptors (GC-A and GC-B) to generate cGMP. Whereas cGMP-independent signalling has been reported in response to natriuretic peptides, this is mediated via either the clearance receptor (Npr-C) or a renal-specific NPR-Bi isoform, which both lack intrinsic guanylyl cyclase activity. Here, we report evidence of GC-B-dependent cGMP-independent signalling in pituitary GH3 cells. Stimulation of GH3 cells with CNP resulted in a rapid and sustained enhancement of ERK1/2 phosphorylation (P-ERK1/2), an effect that was not mimicked by dibutryl-cGMP. Furthermore, CNP-stimulated P-ERK1/2 occurred at concentrations below that required for cGMP accumulation. The effect of CNP on P-ERK1/2 was sensitive to pharmacological blockade of MEK (U0126) and Src kinases (PP2). Silencing of the GC-B1 and GC-B2 splice variants of the GC-B receptor by using targeted short interfering RNAs completely blocked the CNP effects on P-ERK1/2. CNP failed to alter GH3 cell proliferation or cell cycle distribution but caused a concentration-dependent increase in the activity of the human glycoprotein α-subunit promoter (αGSU) in a MEK-dependent manner. Finally, CNP also activated the p38 and JNK MAPK pathways in GH3 cells. These findings reveal an additional mechanism of GC-B signalling and suggest additional biological roles for CNP in its target tissues.


Asunto(s)
Guanilato Ciclasa/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Péptido Natriurético Tipo-C/farmacología , Somatotrofos/metabolismo , Animales , Línea Celular , GMP Cíclico/metabolismo , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Receptores Acoplados a la Guanilato-Ciclasa/metabolismo , Somatotrofos/efectos de los fármacos
15.
BMC Res Notes ; 9: 362, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27456002

RESUMEN

BACKGROUND: Endoglin/CD105 is an auxiliary receptor for transforming growth factor-ß with established roles in vascular remodelling. It has recently been shown that heterozygous endoglin deficiency in mice decreases insulin secretion in an animal model of obesity, highlighting a potential role for endoglin in the regulation of islet function. We have previously identified two different populations of endoglin expressing cells in human and mouse islets which are: (i) endothelial cells (ECs) and (ii) islet mesenchymal stromal cells. The contribution of islet EC endoglin expression to islet development and sensitivity to VEGF is unknown and is the focus of this study. RESULTS: In vitro culture of mouse islets with VEGF164 for 48 h increased endoglin mRNA levels above untreated controls but VEGF did not modulate VEGFR2, CD31 or CD34 mRNA expression or islet viability. Removal of EC-endoglin expression in vivo reduced islet EC area but had no apparent effect on islet size or architecture. CONCLUSION: EC-specific endoglin expression in islets is sensitive to VEGF and plays partial roles in driving islet vascular development, however such regulation appears to be distinct to mechanisms required to modulate islet viability and size.


Asunto(s)
Endoglina/genética , Células Endoteliales/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , ARN Mensajero/genética , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Antígenos CD34/genética , Antígenos CD34/metabolismo , Endoglina/agonistas , Endoglina/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , ARN Mensajero/agonistas , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal , Técnicas de Cultivo de Tejidos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
16.
J Lipid Res ; 57(7): 1204-18, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27185859

RESUMEN

Circulating levels of chylomicron remnants (CMRs) increase postprandially and their composition directly reflects dietary lipid intake. These TG-rich lipoproteins likely contribute to the development of endothelial dysfunction, albeit via unknown mechanisms. Here, we investigated how the FA composition of CMRs influences their actions on human aortic endothelial cells (HAECs) by comparing the effects of model CMRs-artificial TG-rich CMR-like particles (A-CRLPs)-containing TGs extracted from fish, DHA-rich algal, corn, or palm oils. HAECs responded with distinct transcriptional programs according to A-CRLP TG content and oxidation status, with genes involved in antioxidant defense and cytoprotection most prominently affected by n-3 PUFA-containing A-CRLPs. These particles were significantly more efficacious inducers of heme oxygenase-1 (HO-1) than n-6 PUFA corn or saturated FA-rich palm CRLPs. Mechanistically, HO-1 induction by all CRLPs requires NADPH oxidase 4, with PUFA-containing particles additionally dependent upon mitochondrial reactive oxygen species. Activation of both p38 MAPK and PPARß/δ culminates in increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression/nuclear translocation and HO-1 induction. These studies define new molecular pathways coupling endothelial cell activation by model CMRs with adaptive regulation of Nrf2-dependent HO-1 expression and may represent key mechanisms through which dietary FAs differentially impact progression of endothelial dysfunction.


Asunto(s)
Células Endoteliales/metabolismo , Hemo-Oxigenasa 1/genética , NADPH Oxidasas/genética , Factor 2 Relacionado con NF-E2/genética , Triglicéridos/metabolismo , Animales , Antioxidantes/metabolismo , Remanentes de Quilomicrones/sangre , Células Endoteliales/patología , Ácidos Grasos Omega-3/sangre , Regulación de la Expresión Génica/genética , Hemo-Oxigenasa 1/sangre , Humanos , Metabolismo de los Lípidos/genética , Lipoproteínas/sangre , NADPH Oxidasa 4 , NADPH Oxidasas/sangre , Factor 2 Relacionado con NF-E2/sangre , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo
17.
PLoS One ; 9(10): e109375, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25289673

RESUMEN

Endothelial colony-forming cells (ECFCs) are obtained from the culture of human peripheral blood mononuclear cell (hPBMNC) fractions and are characterised by high proliferative and pro-vasculogenic potential, which makes them of great interest for cell therapy. Here, we describe the detection of protease-activated receptor (PAR) 1 and 2 amongst the surface proteins expressed in ECFCs. Both receptors are functionally coupled to extracellular signal-regulated kinase (ERK) 1 and 2, which become activated and phosphorylated in response to selective PAR1- or PAR2-activating peptides. Specific stimulation of PAR1, but not PAR2, significantly inhibits capillary-like tube formation by ECFCs in vitro, suggesting that tubulogenesis is negatively regulated by proteases able to stimulate PAR1 (e.g. thrombin). The activation of ERKs is not involved in the regulation of tubulogenesis in vitro, as suggested by use of the MEK inhibitor PD98059 and by the fact that PAR2 stimulation activates ERKs without affecting capillary tube formation. Both qPCR and immunoblotting showed a significant downregulation of vascular endothelial growth factor 2 (VEGFR2) in response to PAR1 stimulation. Moreover, the addition of VEGF (50-100 ng/ml) but not basic Fibroblast Growth Factor (FGF) (25-100 ng/ml) rescued tube formation by ECFCs treated with PAR1-activating peptide. Therefore, we propose that reduction of VEGF responsiveness resulting from down-regulation of VEGFR2 is underlying the anti-tubulogenic effect of PAR1 activation. Although the role of PAR2 remains elusive, this study sheds new light on the regulation of the vasculogenic activity of ECFCs and suggests a potential link between adult vasculogenesis and the coagulation cascade.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Expresión Génica , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neovascularización Fisiológica/genética , Fenotipo
18.
Am J Clin Nutr ; 100(4): 1019-28, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25099540

RESUMEN

BACKGROUND: Eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) supplementation has beneficial cardiovascular effects, but postprandial influences of these individual fatty acids are unclear. OBJECTIVES: The primary objective was to determine the vascular effects of EPA + DHA compared with DHA only during postprandial lipemia relative to control high-oleic acid meals; the secondary objective was to characterize the effects of linoleic acid-enriched high-fat meals relative to the control meal. DESIGN: We conducted a randomized, controlled, double-blind crossover trial of 4 high-fat (75-g) meals containing 1) high-oleic acid sunflower oil (HOS; control), 2) HOS + fish oil (FO; 5 g EPA and DHA), 3) HOS + algal oil (AO; 5 g DHA), and 4) high-linoleic acid sunflower oil (HLS) in 16 healthy men (aged 35-70 y) with higher than optimal fasting triacylglycerol concentrations (mean ± SD triacylglycerol, 1.9 ± 0.5 mmol/L). RESULTS: Elevations in triacylglycerol concentration relative to baseline were slightly reduced after FO and HLS compared with the HOS control (P < 0.05). The characteristic decrease from baseline in plasma nonesterified fatty acids after a mixed meal was inhibited after AO (Δ 0-3 h, P < 0.05). HLS increased the augmentation index compared with the other test meals (P < 0.05), although the digital volume pulse-reflection index was not significantly different. Plasma 8-isoprostane F2α analysis revealed opposing effects of FO (increased) and AO (reduced) compared with the control (P < 0.05). No differences in nitric oxide metabolites were observed. CONCLUSIONS: These data show differential postprandial 8-isoprostane F2α responses to high-fat meals containing EPA + DHA-rich fish oil compared with DHA-rich AO, but these differences were not associated with consistent effects on postprandial vascular function or lipemia. More detailed analyses of polyunsaturated fatty acid-derived lipid mediators are required to determine possible divergent functional effects of single meals rich in either DHA or EPA. This trial was registered at clinicaltrials.gov as NCT01618071.


Asunto(s)
Dinoprost/análogos & derivados , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Comidas , Periodo Posprandial/efectos de los fármacos , Adulto , Anciano , Glucemia/metabolismo , Estudios Cruzados , Grasas de la Dieta/administración & dosificación , Dinoprost/sangre , Método Doble Ciego , Aceites de Pescado/administración & dosificación , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/dietoterapia , Masculino , Persona de Mediana Edad , Óxido Nítrico/sangre , Ácidos Oléicos/administración & dosificación , Aceites de Plantas/administración & dosificación , Aceite de Girasol , Triglicéridos/sangre
19.
Mol Cell Endocrinol ; 393(1-2): 129-42, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-24973767

RESUMEN

Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.


Asunto(s)
Ácidos Grasos Monoinsaturados/farmacología , Resistencia a la Insulina , Activación de Macrófagos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Humanos , Mioblastos/citología , Mioblastos/efectos de los fármacos , Ácido Palmítico/toxicidad , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Vet J ; 200(2): 305-11, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24662025

RESUMEN

Dogs with congenital portosystemic shunts (CPSS) have liver hypoplasia and hepatic insufficiency. Surgical CPSS attenuation results in liver growth associated with clinical improvement. The mechanism of this hepatic response is unknown, although liver regeneration is suspected. This study investigated whether markers of liver regeneration were associated with CPSS attenuation. Dogs treated with CPSS attenuation were prospectively recruited. Residual liver tissue was collected for gene expression analysis (seven genes) from 24 CPSS dogs that tolerated complete attenuation, 25 dogs that tolerated partial attenuation and seven control dogs. Relative gene expression was measured using quantitative polymerase chain reaction (qPCR). Blood samples were collected before, 24 h and 48 h post-surgery from 36 CPSS dogs and from 10 control dogs. Serum hepatocyte growth factor (HGF) concentration was measured using a canine specific enzyme-linked immunosorbent assay (ELISA). HGF mRNA expression was significantly decreased in CPSS compared with control dogs (P = 0.046). There were significant increases in HGF (P = 0.050) and methionine adenosyltransferase 2 A (MAT2A; P = 0.002) mRNA expression following partial CPSS attenuation. Dogs with complete attenuation had significantly greater MAT2A (P = 0.024) mRNA expression compared with dogs with partial attenuation. Serum HGF concentration significantly increased 24 h following CPSS attenuation (P < 0.001). Hepatic mRNA expression of two markers of hepatocyte proliferation (HGF and MAT2A) was associated with the response to surgery in dogs with CPSS, and serum HGF significantly increased following surgery, suggesting hepatocyte proliferation. These findings support the concept that hepatic regeneration is important in the hepatic response to CPSS surgery.


Asunto(s)
Enfermedades de los Perros/congénito , Factor de Crecimiento de Hepatocito/genética , Hígado/fisiología , Hígado/cirugía , Sistema Porta/cirugía , Regeneración , Animales , Biomarcadores/sangre , Enfermedades de los Perros/metabolismo , Enfermedades de los Perros/cirugía , Perros , Expresión Génica , Factor de Crecimiento de Hepatocito/sangre , Hígado/anomalías , Hígado/crecimiento & desarrollo , Sistema Porta/anomalías , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA