Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1127515, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845108

RESUMEN

Introduction: Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) remains a major global health threat. The only available vaccine Bacille Calmette-Guérin (BCG) does not prevent adult pulmonary TB. New effective TB vaccines should aim to stimulate robust T cell responses in the lung mucosa to achieve high protective efficacy. We have previously developed a novel viral vaccine vector based on recombinant Pichinde virus (PICV), a non-pathogenic arenavirus with low seroprevalence in humans, and have demonstrated its efficacy to induce strong vaccine immunity with undetectable anti-vector neutralization activity. Methods: Using this tri-segmented PICV vector (rP18tri), we have generated viral vectored TB vaccines (TBvac-1, TBvac-2, and TBvac-10) encoding several known TB immunogens (Ag85B, EsxH, and ESAT-6/EsxA). A P2A linker sequence was used to allow for the expression of two proteins from one open-reading-frame (ORF) on the viral RNA segments. The immunogenicity of TBvac-2 and TBvac-10 and the protective efficacy of TBvac-1 and TBvac-2 were evaluated in mice. Results: Both viral vectored vaccines elicited strong antigen-specific CD4 and CD8 T cells through intramuscular (IM) and intranasal (IN) routes as evaluated by MHC-I and MHC-II tetramer analyses, respectively. The IN inoculation route helped to elicit strong lung T cell responses. The vaccine-induced antigen-specific CD4 T cells are functional, expressing multiple cytokines as detected by intracellular cytokine staining. Finally, immunization with TBvac-1 or TBvac-2, both expressing the same trivalent antigens (Ag85B, EsxH, ESAT6/EsxA), reduced Mtb lung tissue burden and dissemination in an aerosol challenge mouse model. Conclusions: The novel PICV vector-based TB vaccine candidates can express more than two antigens via the use of P2A linker sequence and elicit strong systemic and lung T cell immunity with protective efficacy. Our study suggests the PICV vector as an attractive vaccine platform for the development of new and effective TB vaccine candidates.


Asunto(s)
Vacunas contra la Tuberculosis , Tuberculosis , Animales , Humanos , Ratones , Antígenos Bacterianos/genética , Antígenos Virales , Proteínas Bacterianas/genética , Citocinas/metabolismo , Estudios Seroepidemiológicos , Vacunas contra la Tuberculosis/genética , Vacunas Sintéticas/genética , Linfocitos T/inmunología
2.
Infect Immun ; 87(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30455198

RESUMEN

The Mycobacterium tuberculosis type VII secretion system ESX-5, which has been implicated in virulence, is activated at the transcriptional level by the phosphate starvation-responsive Pst/SenX3-RegX3 signal transduction system. Deletion of pstA1, which encodes a Pst phosphate transporter component, causes constitutive activation of the response regulator RegX3, hypersecretion of ESX-5 substrates and attenuation in the mouse infection model. We hypothesized that constitutive activation of ESX-5 secretion causes attenuation of the ΔpstA1 mutant. To test this, we uncoupled ESX-5 from regulation by RegX3. Using electrophoretic mobility shift assays, we defined a RegX3 binding site in the esx-5 locus. Deletion or mutation of the RegX3 binding site reversed hypersecretion of the ESX-5 substrate EsxN by the ΔpstA1 mutant and abrogated induction of EsxN secretion in response to phosphate limitation by wild-type M. tuberculosis The esx-5 RegX3 binding site deletion (ΔBS) also suppressed attenuation of the ΔpstA1 mutant in Irgm1-/- mice. These data suggest that constitutive ESX-5 secretion sensitizes M. tuberculosis to an immune response that still occurs in Irgm1-/- mice. However, the ΔpstA1 ΔBS mutant remained attenuated in both NOS2-/- and C57BL/6 mice, suggesting that factors other than ESX-5 secretion also contribute to attenuation of the ΔpstA1 mutant. In addition, a ΔpstA1 ΔesxN mutant lacking the hypersecreted ESX-5 substrate EsxN remained attenuated in Irgm1-/- mice, suggesting that ESX-5 substrates other than EsxN cause increased susceptibility to host immunity. Our data indicate that while M. tuberculosis requires ESX-5 for virulence, it tightly controls secretion of ESX-5 substrates to avoid elimination by host immune responses.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al GTP/deficiencia , Mycobacterium tuberculosis , Tuberculosis/inmunología , Factores de Virulencia/metabolismo , Virulencia/fisiología , Animales , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Regulación Bacteriana de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/microbiología
3.
mBio ; 9(3)2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29895636

RESUMEN

Mycobacterium tuberculosis releases membrane vesicles (MV) that modulate host immune responses and aid in iron acquisition, although they may have additional unappreciated functions. MV production appears to be a regulated process, but virR remains the only characterized genetic regulator of vesiculogenesis. Here, we present data supporting a role for the M. tuberculosis Pst/SenX3-RegX3 signal transduction system in regulating MV production. Deletion of pstA1, which encodes a transmembrane component of the phosphate-specific transport (Pst) system, causes constitutive activation of the SenX3-RegX3 two-component system, leading to increased protein secretion via the specialized ESX-5 type VII secretion system. Using proteomic mass spectrometry, we identified several additional proteins hyper-secreted by the ΔpstA1 mutant, including LpqH, an MV-associated lipoprotein. Nanoparticle tracking analysis revealed a 15-fold increase in MV production by the ΔpstA1 mutant. Both hyper-secretion of LpqH and increased MV release required RegX3 but were independent of VirR, suggesting that Pst/SenX3-RegX3 controls MV release by a novel mechanism. Prior proteomic analysis identified ESX-5 substrates associated with MV. We therefore hypothesized that MV release requires ESX-5 activity. We constructed strains that conditionally express eccD5 , which encodes the predicted ESX-5 transmembrane channel. Upon EccD5 depletion, we observed reduced secretion of the ESX-5 substrates EsxN and PPE41, but MV release was unaffected. Our data suggest that ESX-5 does not affect vesicle production and imply that further characterization of the Pst/SenX3-RegX3 regulon might reveal novel mechanisms of M. tuberculosis vesicle biogenesis.IMPORTANCE In Gram-negative bacteria, MV derived from the outer membrane have diverse functions in bacterial physiology and pathogenesis, and several factors regulating their production have been identified. Though Gram-positive bacteria and mycobacteria that lack an outer membrane also produce vesicles with described roles in pathogenesis, the mechanisms of MV biogenesis in these organisms remain poorly characterized. Defining mechanisms of MV biogenesis might yield significant insights into the importance of MV production during infection. In M. tuberculosis, only a single genetic element, virR, is known to regulate MV production. Our work reveals that the Pst/SenX3-RegX3 signal transduction system is a novel regulator of MV biogenesis that controls MV production by a mechanism that is independent of both VirR and activation of the specialized ESX-5 protein secretion system. Understanding which genes in the RegX3 regulon cause increased MV production might reveal novel molecular mechanisms of MV release.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Vesículas Extracelulares/metabolismo , Mycobacterium tuberculosis/enzimología , Fosfotransferasas/metabolismo , Tuberculosis/microbiología , Factores de Virulencia/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Vesículas Extracelulares/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosfotransferasas/genética , Transducción de Señal , Factores de Virulencia/genética
4.
PLoS Pathog ; 13(5): e1006363, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28505176

RESUMEN

A key to the pathogenic success of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the capacity to survive within host macrophages. Although several factors required for this survival have been identified, a comprehensive knowledge of such factors and how they work together to manipulate the host environment to benefit bacterial survival are not well understood. To systematically identify Mtb factors required for intracellular growth, we screened an arrayed, non-redundant Mtb transposon mutant library by high-content imaging to characterize the mutant-macrophage interaction. Based on a combination of imaging features, we identified mutants impaired for intracellular survival. We then characterized the phenotype of infection with each mutant by profiling the induced macrophage cytokine response. Taking a systems-level approach to understanding the biology of identified mutants, we performed a multiparametric analysis combining pathogen and host phenotypes to predict functional relationships between mutants based on clustering. Strikingly, mutants defective in two well-known virulence factors, the ESX-1 protein secretion system and the virulence lipid phthiocerol dimycocerosate (PDIM), clustered together. Building upon the shared phenotype of loss of the macrophage type I interferon (IFN) response to infection, we found that PDIM production and export are required for coordinated secretion of ESX-1-substrates, for phagosomal permeabilization, and for downstream induction of the type I IFN response. Multiparametric clustering also identified two novel genes that are required for PDIM production and induction of the type I IFN response. Thus, multiparametric analysis combining host and pathogen infection phenotypes can be used to identify novel functional relationships between genes that play a role in infection.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Mycobacterium tuberculosis/patogenicidad , Fagosomas/microbiología , Tuberculosis/microbiología , Animales , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Línea Celular , Citocinas/inmunología , Citocinas/metabolismo , Biblioteca de Genes , Interacciones Huésped-Patógeno , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/inmunología , Fagosomas/inmunología , Fenotipo , Tuberculosis/inmunología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...