Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 77
1.
Front Endocrinol (Lausanne) ; 14: 1063083, 2023.
Article En | MEDLINE | ID: mdl-36777346

Introduction: Due to a lack of spatial-temporal resolution at the single cell level, the etiologies of the bone dysfunction caused by diseases such as normal aging, osteoporosis, and the metabolic bone disease associated with chronic kidney disease (CKD) remain largely unknown. Methods: To this end, flow cytometry and scRNAseq were performed on long bone cells from Sost-cre/Ai9+ mice, and pure osteolineage transcriptomes were identified, including novel osteocyte-specific gene sets. Results: Clustering analysis isolated osteoblast precursors that expressed Tnc, Mmp13, and Spp1, and a mature osteoblast population defined by Smpd3, Col1a1, and Col11a1. Osteocytes were demarcated by Cd109, Ptprz1, Ramp1, Bambi, Adamts14, Spns2, Bmp2, WasI, and Phex. We validated our in vivo scRNAseq using integrative in vitro promoter occupancy via ATACseq coupled with transcriptomic analyses of a conditional, temporally differentiated MSC cell line. Further, trajectory analyses predicted osteoblast-to-osteocyte transitions via defined pathways associated with a distinct metabolic shift as determined by single-cell flux estimation analysis (scFEA). Using the adenine mouse model of CKD, at a time point prior to major skeletal alterations, we found that gene expression within all stages of the osteolineage was disturbed. Conclusion: In sum, distinct populations of osteoblasts/osteocytes were defined at the single cell level. Using this roadmap of gene assembly, we demonstrated unrealized molecular defects across multiple bone cell populations in a mouse model of CKD, and our collective results suggest a potentially earlier and more broad bone pathology in this disease than previously recognized.


Renal Insufficiency, Chronic , Transcriptome , Mice , Animals , Bone and Bones/metabolism , Osteoblasts/metabolism , Cortical Bone/metabolism , Renal Insufficiency, Chronic/pathology , Membrane Proteins/metabolism , Sphingomyelin Phosphodiesterase/metabolism
2.
Nat Rev Nephrol ; 19(3): 185-193, 2023 03.
Article En | MEDLINE | ID: mdl-36624273

The bone-derived hormone fibroblast growth factor 23 (FGF23) functions in concert with parathyroid hormone (PTH) and the active vitamin D metabolite, 1,25(OH)2 vitamin D (1,25D), to control phosphate and calcium homeostasis. A rise in circulating levels of phosphate and 1,25D leads to FGF23 production in bone. Circulating FGF23 acts on the kidney by binding to FGF receptors and the co-receptor α-Klotho to promote phosphaturia and reduce circulating 1,25D levels. Various other biomolecules that are produced by the kidney, including lipocalin-2, glycerol 3-phosphate, 1-acyl lysophosphatidic acid and erythropoietin, are involved in the regulation of mineral metabolism via effects on FGF23 synthesis in bone. Understanding of the molecular mechanisms that control FGF23 synthesis in the bone and its bioactivity in the kidney has led to the identification of potential targets for novel interventions. Emerging approaches to target aberrant phosphate metabolism include small molecule inhibitors that directly bind FGF23 and prevent its interactions with FGF receptors and α-Klotho, FGF23 peptide fragments that act as competitive inhibitors of intact FGF23 and small molecule inhibitors of kidney sodium-phosphate cotransporters.


Bone and Bones , Fibroblast Growth Factor-23 , Kidney , Humans , Bone and Bones/metabolism , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factors/metabolism , Kidney/metabolism , Klotho Proteins , Phosphates/metabolism , Vitamin D
3.
Bone Res ; 11(1): 7, 2023 Jan 18.
Article En | MEDLINE | ID: mdl-36650133

Osteocytes act within a hypoxic environment to control key steps in bone formation. FGF23, a critical phosphate-regulating hormone, is stimulated by low oxygen/iron in acute and chronic diseases, however the molecular mechanisms directing this process remain unclear. Our goal was to identify the osteocyte factors responsible for FGF23 production driven by changes in oxygen/iron utilization. Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) which stabilize HIF transcription factors, increased Fgf23 in normal mice, as well as in osteocyte-like cells; in mice with conditional osteocyte Fgf23 deletion, circulating iFGF23 was suppressed. An inducible MSC cell line ('MPC2') underwent FG-4592 treatment and ATACseq/RNAseq, and demonstrated that differentiated osteocytes significantly increased HIF genomic accessibility versus progenitor cells. Integrative genomics also revealed increased prolyl hydroxylase Egln1 (Phd2) chromatin accessibility and expression, which was positively associated with osteocyte differentiation. In mice with chronic kidney disease (CKD), Phd1-3 enzymes were suppressed, consistent with FGF23 upregulation in this model. Conditional loss of Phd2 from osteocytes in vivo resulted in upregulated Fgf23, in line with our findings that the MPC2 cell line lacking Phd2 (CRISPR Phd2-KO cells) constitutively activated Fgf23 that was abolished by HIF1α blockade. In vitro, Phd2-KO cells lost iron-mediated suppression of Fgf23 and this activity was not compensated for by Phd1 or -3. In sum, osteocytes become adapted to oxygen/iron sensing during differentiation and are directly sensitive to bioavailable iron. Further, Phd2 is a critical mediator of osteocyte FGF23 production, thus our collective studies may provide new therapeutic targets for skeletal diseases involving disturbed oxygen/iron sensing.

4.
Biomolecules ; 12(12)2022 12 12.
Article En | MEDLINE | ID: mdl-36551284

Our understanding of how osteocytes, the principal mechanosensors within bone, sense and perceive force remains unclear. Previous work identified "tethering elements" (TEs) spanning the pericellular space of osteocytes and transmitting mechanical information into biochemical signals. While we identified the heparan sulfate proteoglycan perlecan (PLN) as a component of these TEs, PLN must attach to the cell surface to induce biochemical responses. As voltage-sensitive calcium channels (VSCCs) are critical for bone mechanotransduction, we hypothesized that PLN binds the extracellular α2δ1 subunit of VSCCs to couple the bone matrix to the osteocyte membrane. Here, we showed co-localization of PLN and α2δ1 along osteocyte dendritic processes. Additionally, we quantified the molecular interactions between α2δ1 and PLN domains and demonstrated for the first time that α2δ1 strongly associates with PLN via its domain III. Furthermore, α2δ1 is the binding site for the commonly used pain drug, gabapentin (GBP), which is associated with adverse skeletal effects when used chronically. We found that GBP disrupts PLN::α2δ1 binding in vitro, and GBP treatment in vivo results in impaired bone mechanosensation. Our work identified a novel mechanosensory complex within osteocytes composed of PLN and α2δ1, necessary for bone force transmission and sensitive to the drug GBP.


Heparan Sulfate Proteoglycans , Mechanotransduction, Cellular , Heparan Sulfate Proteoglycans/metabolism , Gabapentin/pharmacology , Extracellular Matrix Proteins/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism
5.
Physiol Rep ; 10(11): e15307, 2022 06.
Article En | MEDLINE | ID: mdl-35656701

Ferric citrate (FC) is an approved therapy for chronic kidney disease (CKD) patients as a phosphate (Pi) binder for dialysis-dependent CKD, and for iron deficiency anemia (IDA) in non-dialysis CKD. Elevated Pi and IDA both lead to increased FGF23, however, the roles of iron and FGF23 during CKD remain unclear. To this end, iron and Pi metabolism were tested in a mouse model of CKD (0.2% adenine) ± 0.5% FC for 6 weeks, with and without osteocyte deletion of Fgf23 (flox-Fgf23/Dmp1-Cre). Intact FGF23 (iFGF23) increased in all CKD mice but was lower in Cre+ mice with or without FC, thus the Dmp1-Cre effectively reduced FGF23. Cre+ mice fed AD-only had higher serum Pi than Cre- pre- and post-diet, and the Cre+ mice had higher BUN regardless of FC treatment. Total serum iron was higher in all mice receiving FC, and liver Tfrc, Bmp6, and hepcidin mRNAs were increased regardless of genotype; liver IL-6 showed decreased mRNA in FC-fed mice. The renal 1,25-dihydroxyvitamin D (1,25D) anabolic enzyme Cyp27b1 had higher mRNA and the catabolic Cyp24a1 showed lower mRNA in FC-fed mice. Finally, mice with loss of FGF23 had higher bone cortical porosity, whereas Raman spectroscopy showed no changes in matrix mineral parameters. Thus, FC- and FGF23-dependent and -independent actions were identified in CKD; loss of FGF23 was associated with higher serum Pi and BUN, demonstrating that FGF23 was protective of mineral metabolism. In contrast, FC maintained serum iron and corrected inflammation mediators, potentially providing ancillary benefit.


Fibroblast Growth Factors , Iron , Renal Insufficiency, Chronic , Animals , Citric Acid , Disease Models, Animal , Electrolytes , Ferric Compounds , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Humans , Iron/metabolism , Mice , Minerals , RNA, Messenger/metabolism , Renal Insufficiency, Chronic/metabolism
6.
Curr Opin Nephrol Hypertens ; 31(4): 320-325, 2022 07 01.
Article En | MEDLINE | ID: mdl-35703246

PURPOSE OF REVIEW: Chronic kidney disease (CKD) is a progressive disorder that is associated with development of elevated fibroblast growth factor 23 (FGF23) levels and anemia. Here, we review recent literature that extends our current knowledge on the interactions between FGF23 and anemia in CKD and the impact of anemia-targeting therapeutics on FGF23 elevation in CKD. RECENT FINDINGS: The anemia of CKD is primarily driven by a lack of erythropoietin (EPO) and iron deficiency. In addition to EPO and iron replacement, novel drug classes to treat anemia have been approved or are in clinical development. A recent observational study provides supportive evidence for the hypothesis that FGF23 elevation in CKD mediates adverse effects of iron deficiency on the cardiovascular system in patients with CKD. Preclinical and clinical studies revealed that ferric citrate (FC), and hypoxia-induced factor-prolyl hydroxylase inhibitor (HIF-PHI) treatment may reduce elevated FGF23 levels in CKD, suggesting that correcting anemia in CKD could potentially lower FGF23 levels. However, as we describe, HIF-PHI have context-dependent effects. Moreover, whether a reduction in FGF23 will improve patient outcomes in patients with CKD remains to be determined. SUMMARY: With the emergence of novel therapeutics to treat oxygen and iron utilization deficits in CKD, studies have investigated the impact of these new drugs on FGF23. Several of these drugs, including FC and HIF-PHIs, alleviate iron homeostasis alterations in CKD and are associated with FGF23 reduction. Herein, we review the relationships between oxygen/iron sensing and FGF23 in CKD, recent findings which link FGF23 with cardiac dysfunction, as well as future translational and clinical avenues.


Anemia , Renal Insufficiency, Chronic , Anemia/drug therapy , Anemia/etiology , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Homeostasis , Humans , Iron/therapeutic use , Oxygen , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism
7.
Sci Rep ; 11(1): 22593, 2021 11 19.
Article En | MEDLINE | ID: mdl-34799645

Mesenchymal progenitors differentiate into several tissues including bone, cartilage, and adipose. Targeting these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study tissue development. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion is challenging. As such, we developed two mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, generated from bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cells are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions, both lines formed mineralized nodules, and stained for alizarin red and alkaline phosphatase, while expressing osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with addition of parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted intact (iFGF23) and C-terminal (cFGF23) forms of the endocrine hormone FGF23, which was upregulated by 1,25 dihydroxy vitamin D (1,25D). Both lines also rapidly entered the adipogenic lineage, expressing adipose markers after 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of cartilaginous genes including aggrecan, Sox9, and Comp. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.


Adipocytes/cytology , Cell Culture Techniques , Chondrocytes/cytology , Mesenchymal Stem Cells/cytology , Osteocytes/cytology , Animals , Cell Differentiation , Cell Line , Cell Lineage , Cell Proliferation , Fibroblast Growth Factor-23/metabolism , Immunophenotyping , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism
8.
Bone ; 146: 115885, 2021 05.
Article En | MEDLINE | ID: mdl-33618073

BACKGROUND: During aging, there is a normal and mild loss in kidney function that leads to abnormalities of the kidney-bone metabolic axis. In the setting of increased phosphorus intake, hyperphosphatemia can occur despite increased concentrations of the phosphaturic hormone FGF23. This is likely from decreased expression of the FGF23 co-receptor Klotho (KL) with age; however, the roles of age and sex in the homeostatic responses to mild phosphate challenges remain unclear. METHODS: Male and female 16-week and 78-week mice were placed on either normal grain-based chow or casein (higher bioavailable phosphate) diets for 8 weeks. Gene expression, serum biochemistries, micro-computed tomography, and skeletal mechanics were used to assess the impact of mild phosphate challenge on multiple organ systems. Cell culture of differentiated osteoblast/osteocytes was used to test mechanisms driving key outcomes. RESULTS: Aging female mice responded to phosphate challenge by significantly elevating serum intact FGF23 (iFGF23) versus control diet; males did not show this response. Male mice, regardless of age, exhibited higher kidney KL mRNA with similar phosphate levels across both sexes. However, males and females had similar blood phosphate, calcium, and creatinine levels irrespective of age, suggesting that female mice upregulated FGF23 to maintain blood phosphorus, and compromised renal function could not explain the increased serum iFGF23. The 17ß-estradiol levels were not different between groups, and in vivo bone steroid receptor (estrogen receptor 1 [Esr1], estrogen receptor 2 [Esr2], androgen receptor [Ar]) expression was not different by age, sex, or diet. Trabecular bone volume was higher in males but decreased with both age and phosphate challenge in both sexes. Cortical porosity increased with age in males but not females. In vitro studies demonstrated that 17ß-estradiol treatment upregulated FGF23 and Esr2 mRNAs in a dose-dependent manner. CONCLUSIONS: Our study demonstrates that aging female mice upregulate FGF23 to a greater degree during a mild phosphate challenge to maintain blood phosphorus versus young female and young/old male mice, potentially due to direct estradiol effects on osteocytes. Thus, the control of phosphate intake during aging could have modifiable outcomes for FGF23-related phenotypes.


Hyperphosphatemia , Phosphates , Animals , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Glucuronidase , Male , Mice , Mice, Knockout , Osteocytes , X-Ray Microtomography
9.
J Bone Miner Res ; 36(6): 1117-1130, 2021 06.
Article En | MEDLINE | ID: mdl-33592127

Fibroblast growth factor-23 (FGF23) is a critical factor in chronic kidney disease (CKD), with elevated levels causing alterations in mineral metabolism and increased odds for mortality. Patients with CKD develop anemia as the kidneys progressively lose the ability to produce erythropoietin (EPO). Anemia is a potent driver of FGF23 secretion; therefore, a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI) currently in clinical trials to elevate endogenous EPO to resolve anemia was tested for effects on iron utilization and FGF23-related parameters in a CKD mouse model. Mice were fed either a casein control diet or an adenine-containing diet to induce CKD. The CKD mice had markedly elevated iFGF23 and blood urea nitrogen (BUN), hyperphosphatemia, and anemia. Cohorts of mice were then treated with a patient-equivalent dose of BAY 85-3934 (BAY; Molidustat), which elevated EPO and completely resolved aberrant complete blood counts (CBCs) in the CKD mice. iFGF23 was elevated in vehicle-treated CKD mice (120-fold), whereas circulating iFGF23 was significantly attenuated (>60%) in the BAY-treated CKD mice. The BAY-treated mice with CKD also had reduced BUN, but there was no effect on renal vitamin D metabolic enzyme expression. Consistent with increased EPO, bone marrow Erfe, Transferrin receptor (Tfrc), and EpoR mRNAs were increased in BAY-treated CKD mice, and in vitro hypoxic marrow cultures increased FGF23 with direct EPO treatment. Liver Bmp-6 and hepcidin expression were downregulated in all BAY-treated groups. Femur trabecular parameters and cortical porosity were not worsened with BAY administration. In vitro, differentiated osteocyte-like cells exposed to an iron chelator to simulate iron depletion/hypoxia increased FGF23; repletion with holo-transferrin completely suppressed FGF23 and normalized Tfrc1. Collectively, these results support that resolving anemia using a HIF-PHI during CKD was associated with lower BUN and reduced FGF23, potentially through direct restoration of iron utilization, thus providing modifiable outcomes beyond improving anemia for this patient population. © 2021 American Society for Bone and Mineral Research (ASBMR).


Anemia , Renal Insufficiency, Chronic , Anemia/drug therapy , Animals , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Humans , Mice , Pyrazoles , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Triazoles
10.
Cell Rep ; 34(4): 108665, 2021 01 26.
Article En | MEDLINE | ID: mdl-33503417

FGF23 interacts with a FGFR/KL-receptor complex to propagate cellular signaling, where its C-terminal C26 peptide is critical for engaging the co-receptor KL. We identify a distinct peptide sequence C28 residing in the FGF23 C terminus that regulates its interaction with KL. C28 can independently function as an FGF23 antagonist, and we report an optimized peptide antagonist of much enhanced potency. FGF23 can use either of the two C-terminal sites to exert biological effects, as shown by in vitro and in vivo studies. The loss of both KL-interaction sites inactivates the protein. We conclude that the C terminus of FGF23 is a bidentate ligand possessing two independent KL-interaction sites. The identification of this second KL-association site provides an additional perspective in the molecular basis of FGF23-receptor signaling and raises questions pertaining to its structural mechanism of action and the potential for biased biological signaling.


Cell Membrane/metabolism , Fibroblast Growth Factor-23/metabolism , Animals , Humans , Mice
11.
Kidney Int ; 99(3): 598-608, 2021 03.
Article En | MEDLINE | ID: mdl-33159963

Fibroblast Growth Factor 23 (FGF23) is a bone-derived hormone that reduces kidney phosphate reabsorption and 1,25(OH)2 vitamin D synthesis via its required co-receptor alpha-Klotho. To identify novel genes that could serve as targets to control FGF23-mediated mineral metabolism, gene array and single-cell RNA sequencing were performed in wild type mouse kidneys. Gene array demonstrated that heparin-binding EGF-like growth factor (HBEGF) was significantly up-regulated following one-hour FGF23 treatment of wild type mice. Mice injected with HBEGF had phenotypes consistent with partial FGF23-mimetic activity including robust induction of Egr1, and increased Cyp24a1 mRNAs. Single cell RNA sequencing showed overlapping HBEGF and EGF-receptor expression mostly in the proximal tubule, and alpha-Klotho expression in proximal and distal tubule segments. In alpha-Klotho-null mice devoid of canonical FGF23 signaling, HBEGF injections significantly increased Egr1 and Cyp24a1 with correction of basally elevated Cyp27b1. Additionally, mice placed on a phosphate deficient diet to suppress FGF23 had endogenously increased Cyp27b1 mRNA, which was rescued in mice receiving HBEGF. In HEK293 cells with stable alpha-Klotho expression, FGF23 and HBEGF increased CYP24A1 mRNA expression. HBEGF, but not FGF23 bioactivity was blocked with EGF-receptor inhibition. Thus, our findings support that the paracrine/autocrine factor HBEGF could play novel roles in controlling genes downstream of FGF23 via targeting common signaling pathways.


Fibroblast Growth Factors , Vitamin D , Animals , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/genetics , Glucuronidase/genetics , HEK293 Cells , Humans , Kidney , Mice , Minerals , Phosphates
12.
Article En | MEDLINE | ID: mdl-32982979

Osteocytes, which represent up to 95% of adult skeletal cells, are deeply embedded in bone. These cells exhibit important interactive abilities with other bone cells such as osteoblasts and osteoclasts to control skeletal formation and resorption. Beyond this local role, osteocytes can also influence the function of distant organs due to the presence of their sophisticated lacunocanalicular system, which connects osteocyte dendrites directly to the vasculature. Through these networks, osteocytes sense changes in circulating metabolites and respond by producing endocrine factors to control homeostasis. One critical function of osteocytes is to respond to increased blood phosphate and 1,25(OH)2 vitamin D (1,25D) by producing fibroblast growth factor-23 (FGF23). FGF23 acts on the kidneys through partner fibroblast growth factor receptors (FGFRs) and the co-receptor Klotho to promote phosphaturia via a downregulation of phosphate transporters, as well as the control of vitamin D metabolizing enzymes to reduce blood 1,25D. In the first part of this review, we will explore the signals involved in the positive and negative regulation of FGF23 in osteocytes. In the second portion, we will bridge bone responses with the review of current knowledge on FGF23 endocrine functions in the kidneys.


Fibroblast Growth Factors/metabolism , Glucuronidase/metabolism , Kidney Diseases/metabolism , Kidney/metabolism , Osteocytes/metabolism , Animals , Fibroblast Growth Factor-23 , Humans , Klotho Proteins , Signal Transduction/physiology
13.
Physiol Rep ; 8(11): e14434, 2020 06.
Article En | MEDLINE | ID: mdl-32476270

Iron-deficiency anemia is a potent stimulator of the phosphaturic hormone Fibroblast growth factor-23 (FGF23). Anemia, elevated FGF23, and elevated serum phosphate are significant mortality risk factors for patients with chronic kidney disease (CKD). However, the contribution of anemia to overall circulating FGF23 levels in CKD is not understood. Our goal was to investigate the normalization of iron handling in a CKD model using the erythropoiesis stimulating agents (ESAs) Erythropoietin (EPO) and the hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHDi) FG-4592, on the production of, and outcomes associated with, changes in bioactive, intact FGF23 ("iFGF23"). Our hypothesis was that rescuing the prevailing anemia in a model of CKD would reduce circulating FGF23. Wild-type mice were fed an adenine-containing diet to induce CKD, then injected with EPO or FG-4592. The mice with CKD were anemic, and EPO improved red blood cell indices, whereas FG-4592 increased serum EPO and bone marrow erythroferrone (Erfe), and decreased liver ferritin, bone morphogenic protein-6 (Bmp-6), and hepcidin mRNAs. In the mice with CKD, iFGF23 was markedly elevated in control mice but was attenuated by >70% after delivery of either ESA, with no changes in serum phosphate. ESA treatment also reduced renal fibrosis markers, as well as increased Cyp27b1 and reduced Cyp24a1 mRNA expression. Thus, improvement of iron utilization in a CKD model using EPO and a HIF-PHDi significantly reduced iFGF23, demonstrating that anemia is a primary driver of FGF23, and that management of iron utilization in patients with CKD may translate to modifiable outcomes in mineral metabolism.


Erythropoietin/administration & dosage , Fibroblast Growth Factors/blood , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Prolyl-Hydroxylase Inhibitors/administration & dosage , Renal Insufficiency, Chronic/blood , Anemia/blood , Animals , Bone Morphogenetic Protein 6/blood , Cytokines/blood , Disease Models, Animal , Erythropoietin/blood , Female , Fibroblast Growth Factor-23 , Hepcidins/blood , Mice, Inbred C57BL , Muscle Proteins/blood
14.
Curr Mol Biol Rep ; 5(1): 18-25, 2019 Mar.
Article En | MEDLINE | ID: mdl-31008021

PURPOSE OF REVIEW: The phosphaturic hormone FGF23 is produced primarily in osteoblasts/osteocytes and is known to respond to increases in serum phosphate and 1,25(OH)2 vitamin D (1,25D). Novel regulators of FGF23 were recently identified, and may help explain the pathophysiologies of several diseases. This review will focus on recent studies examining the synthesis and actions of FGF23. RECENT FINDINGS: The synthesis of FGF23 in response to 1,25D is similar to other steroid hormone targets, but the cellular responses to phosphate remain largely unknown. The activity of intracellular processing genes control FGF23 glycosylation and phosphorylation, providing critical functions in determining the serum levels of bioactive FGF23. The actions of FGF23 largely occur through its co-receptor αKlotho (KL) under normal circumstances, but FGF23 has KL-independent activity during situations of high concentrations. SUMMARY: Recent work regarding FGF23 synthesis and bioactivity, as well as considerations for diseases of altered phosphate balance will be reviewed.

15.
JCI Insight ; 4(4)2019 02 21.
Article En | MEDLINE | ID: mdl-30830862

The phosphaturic hormone FGF23 is elevated in chronic kidney disease (CKD). The risk of premature death is substantially higher in the CKD patient population, with cardiovascular disease (CVD) as the leading mortality cause at all stages of CKD. Elevated FGF23 in CKD has been associated with increased odds for all-cause mortality; however, whether FGF23 is associated with positive adaptation in CKD is unknown. To test the role of FGF23 in CKD phenotypes, a late osteoblast/osteocyte conditional flox-Fgf23 mouse (Fgf23fl/fl/Dmp1-Cre+/-) was placed on an adenine-containing diet to induce CKD. Serum analysis showed casein-fed Cre+ mice had significantly higher serum phosphate and blood urea nitrogen (BUN) versus casein diet and Cre- genotype controls. Adenine significantly induced serum intact FGF23 in the Cre- mice over casein-fed mice, whereas Cre+ mice on adenine had 90% reduction in serum intact FGF23 and C-terminal FGF23 as well as bone Fgf23 mRNA. Parathyroid hormone was significantly elevated in mice fed adenine diet regardless of genotype, which significantly enhanced midshaft cortical porosity. Echocardiographs of the adenine-fed Cre+ hearts revealed profound aortic calcification and cardiac hypertrophy versus diet and genotype controls. Thus, these studies demonstrate that increased bone FGF23, although associated with poor outcomes in CKD, is necessary to protect against the cardio-renal consequences of elevated tissue phosphate.


Bone and Bones/metabolism , Cardio-Renal Syndrome/metabolism , Fibroblast Growth Factors/metabolism , Phosphates/blood , Renal Insufficiency, Chronic/metabolism , Adenine/administration & dosage , Adenine/toxicity , Animals , Bone and Bones/cytology , Cardio-Renal Syndrome/blood , Cardio-Renal Syndrome/diagnosis , Cardio-Renal Syndrome/etiology , Disease Models, Animal , Echocardiography , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Humans , Mice , Mice, Transgenic , Osteocytes/metabolism , Parathyroid Hormone/blood , Parathyroid Hormone/metabolism , Phosphates/metabolism , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/complications , Vascular Calcification/blood , Vascular Calcification/etiology , Vascular Calcification/metabolism
16.
J Appl Physiol (1985) ; 126(4): 854-862, 2019 04 01.
Article En | MEDLINE | ID: mdl-30605400

Diabetic nephropathy (DN) is a primary cause of end-stage renal disease and is becoming more prevalent because of the global rise in type 2 diabetes. A model of DN, the db/db uninephrectomized ( db/db-uni) mouse, is characterized by obesity, as well as compromised renal function. This model also manifests defects in mineral metabolism common in DN, including hyperphosphatemia, which leads to severe endocrine disease. The FGF23 coreceptor, α-Klotho, circulates as a soluble, cleaved form (cKL) and may directly influence phosphate handling. Our study sought to test the effects of cKL on mineral metabolism in db/db-uni mice. Mice were placed into either mild or moderate disease groups on the basis of the albumin-to-creatinine ratio (ACR). Body weights of db/db-uni mice were significantly greater across the study compared with lean controls regardless of disease severity. Adeno-associated cKL administration was associated with increased serum Klotho, intact, bioactive FGF23 (iFGF23), and COOH-terminal fragments of FGF23 ( P < 0.05). Blood urea nitrogen was improved after cKL administration, and cKL corrected hyperphosphatemia in the high- and low-ACR db/db-uni groups. Interestingly, 2 wk after cKL delivery, blood glucose levels were significantly reduced in db/db-uni mice with high ACR ( P < 0.05). Interestingly, several genes associated with stabilizing active iFGF23 were also increased in the osteoblastic UMR-106 cell line with cKL treatment. In summary, delivery of cKL to a model of DN normalized blood phosphate levels regardless of disease severity, supporting the concept that targeting cKL-affected pathways could provide future therapeutic avenues in DN. NEW & NOTEWORTHY In this work, systemic and continuous delivery of the "soluble" or "cleaved" form of the FGF23 coreceptor α-Klotho (cKL) via adeno-associated virus to a rodent model of diabetic nephropathy (DN), the db/db uninephrectomized mouse, normalized blood phosphate levels regardless of disease severity. This work supports the concept that targeting cKL-affected pathways could provide future therapeutic avenues for the severe mineral metabolism defects associated with DN.


Diabetic Nephropathies/blood , Glucuronidase/metabolism , Phosphates/blood , Animals , Blood Glucose/metabolism , Cell Line, Tumor , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Disease Models, Animal , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Hyperphosphatemia/blood , Hyperphosphatemia/metabolism , Klotho Proteins , Mice , Osteoblasts/metabolism , Rats
17.
Br J Clin Pharmacol ; 85(6): 1188-1198, 2019 06.
Article En | MEDLINE | ID: mdl-30207609

The most common heritable disorder of renal phosphate wasting, X-linked hypophosphataemia (XLH), was discovered to be caused by inactivating mutations in the phosphate regulating gene with homology to endopeptidases on the X-chromosome (PHEX) gene in 1995. Although the exact molecular mechanisms by which PHEX mutations cause disturbed phosphate handling in XLH remain unknown, focus for novel therapies has more recently been based upon the finding that the bone-produced phosphaturic hormone fibroblast growth factor-23 is elevated in XLH patient plasma. Previous treatment strategies for XLH were based upon phosphate repletion plus active vitamin D analogues, which are difficult to manage, fail to address the primary pathogenesis of the disease, and can have deleterious side effects. A novel therapy for XLH directly targeting fibroblast growth factor-23 via a humanized monoclonal antibody (burosumab-twza/CRYSVITA, henceforth referred to just as burosumab) has emerged as an effective, and recently approved, pharmacological treatment for both children and adults. This review will provide an overview of the clinical manifestations of XLH, the molecular pathophysiology, and summarize its current treatment.


Antibodies, Monoclonal/therapeutic use , Familial Hypophosphatemic Rickets/drug therapy , Fibroblast Growth Factors/antagonists & inhibitors , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized , Biomarkers/blood , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/genetics , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/immunology , Genetic Predisposition to Disease , Humans , Mutation , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Phenotype , Treatment Outcome , Up-Regulation
18.
J Pediatr Genet ; 6(4): 247-251, 2017 Dec.
Article En | MEDLINE | ID: mdl-29147600

Osteoglophonic dysplasia (OD) is an extremely rare, skeletal dysplasia with an autosomal dominant mode of inheritance. Rhizomelic dwarfism, craniosynostosis, impacted teeth, hypodontia or anodontia, and multiple nonossifying bone lesions are the salient features of this condition. We report a 14-year-old girl with clinical and radiological features consistent with OD. She presented with disproportionate short stature, craniosynostosis, a prominent supraorbital ridge, delayed teeth eruption, hypodontia, and multiple nonossifying bone lesions in the femur, tibia, and fibula. She had hypophosphatemia, which is a known association in this dysplasia. She also had advanced bone age, which is an unreported feature of this dysplasia. This condition is caused by activating mutations in FGFR1 . A missense mutation was detected in the FGFR1 , NM_001174067 ( FGFR1 _v001):c.1115G > A [p.(Cys372Tyr)] confirming the diagnosis; this is the first mutation-proven case to be reported from India.

20.
Bone Rep ; 6: 38-43, 2017 Jun.
Article En | MEDLINE | ID: mdl-28377980

Fibroblast growth factor-23 (FGF23) controls key responses to systemic phosphate increases through its phosphaturic actions on the kidney. In addition to stimulation by phosphate, FGF23 positively responds to iron deficiency anemia and hypoxia in rodent models and in humans. The disorder X-linked hypophosphatemia (XLH) is characterized by elevated FGF23 in concert with an intrinsic bone mineralization defect. Indeed, the Hyp mouse XLH model has disturbed osteoblast to osteocyte differentiation with altered expression of a wide variety of genes, including FGF23. The transcription factor Hypoxia inducible factor-1α (HIF1α) has been implicated in regulating FGF23 production and plays a key role in proper bone cell differentiation. Thus the goals of this study were to determine whether HIF1α activation could influence FGF23, and to test osteoblastic HIF1α production on the Hyp endocrine and skeletal phenotypes in vivo. Treatment of primary cultures of osteoblasts/osteocytes and UMR-106 cells with the HIF activator AG490 resulted in rapid HIF1α stabilization and increased Fgf23 mRNA (50-100 fold; p < 0.01-0.001) in a time- and dose-dependent manner. Next, the Phex gene deletion in the Hyp mouse was bred onto mice with a HIF1α/Osteocalcin (OCN)-Cre background. Although HIF1α effects on bone could be detected, FGF23-related phenotypes due to the Hyp mutation were independent of HIF1α in vivo. In summary, FGF23 can be driven by ectopic HIF1α activation under normal iron conditions in vitro, but factors independent of HIF1α activity after mature osteoblast formation are responsible for the disease phenotypes in Hyp mice in vivo.

...