Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Rev Sci Instrum ; 94(1): 013104, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36725556

An x-ray Fresnel diffractive radiography platform was designed for use at the National Ignition Facility. It will enable measurements of micron-scale changes in the density gradients across an interface between isochorically heated warm dense matter materials, the evolution of which is driven primarily through thermal conductivity and mutual diffusion. We use 4.75 keV Ti K-shell x-ray emission to heat a 1000 µm diameter plastic cylinder, with a central 30 µm diameter channel filled with liquid D2, up to 8 eV. This leads to a cylindrical implosion of the liquid D2 column, compressing it to ∼2.3 g/cm3. After pressure equilibration, the location of the D2/plastic interface remains steady for several nanoseconds, which enables us to track density gradient changes across the material interface with high precision. For radiography, we use Cu He-α x rays at 8.3 keV. Using a slit aperture of only 1 µm width increases the spatial coherence of the source, giving rise to significant diffraction features in the radiography signal, in addition to the refraction enhancement, which further increases its sensitivity to density scale length changes at the D2/plastic interface.

2.
Rev Sci Instrum ; 93(9): 093502, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-36182497

Image formation by Fresnel diffraction utilizes both absorption and phase-contrast to measure electron density profiles. The low spatial and spectral coherence requirements allow the technique to be performed with a laser-produced x-ray source coupled with a narrow slit. This makes it an excellent candidate for probing interfaces between materials at extreme conditions, which can only be generated at large-scale laser or pulsed power facilities. Here, we present the results from a proof-of-principle experiment demonstrating an effective ∼2 µm laser-generated source at the OMEGA Laser Facility. This was achieved using slits of 1 × 30 µm2 and 2 × 40 µm2 geometry, which were milled into 30 µm thick Ta plates. Combining these slits with a vanadium He-like 5.2 keV source created a 1D imaging system capable of micrometer-scale resolution. The principal obstacles to achieving an effective 1 µm source are the slit tilt and taper-where the use of a tapered slit is necessary to increase the alignment tolerance. We demonstrate an effective source size by imaging a 2 ± 0.2 µm radius tungsten wire.

3.
J Synchrotron Radiat ; 29(Pt 4): 931-938, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-35787558

High-resolution inelastic X-ray scattering is an established technique in the synchrotron community, used to investigate collective low-frequency responses of materials. When fielded at hard X-ray free-electron lasers (XFELs) and combined with high-intensity laser drivers, it becomes a promising technique for investigating matter at high temperatures and high pressures. This technique gives access to important thermodynamic properties of matter at extreme conditions, such as temperature, material sound speed, and viscosity. The successful realization of this method requires the acquisition of many identical laser-pump/X-ray-probe shots, allowing the collection of a sufficient number of photons necessary to perform quantitative analyses. Here, a 2.5-fold improvement in the energy resolution of the instrument relative to previous works at the Matter in Extreme Conditions (MEC) endstation, Linac Coherent Light Source (LCLS), and the High Energy Density (HED) instrument, European XFEL, is presented. Some aspects of the experimental design that are essential for improving the number of photons detected in each X-ray shot, making such measurements feasible, are discussed. A careful choice of the energy resolution, the X-ray beam mode provided by the XFEL, and the position of the analysers used in such experiments can provide a more than ten-fold improvement in the photometrics. The discussion is supported by experimental data on 10 µm-thick iron and 50 nm-thick gold samples collected at the MEC endstation at the LCLS, and by complementary ray-tracing simulations coupled with thermal diffuse scattering calculations.

4.
Appl Opt ; 61(8): 1987-1993, 2022 Mar 10.
Article En | MEDLINE | ID: mdl-35297891

Warm dense matter is a region of phase space that is of high interest to multiple scientific communities ranging from astrophysics to inertial confinement fusion. Further understanding of the conditions and properties of this complex state of matter necessitates experimental benchmarking of the current theoretical models. We discuss the development of an x-ray radiography platform designed to measure warm dense matter transport properties at large laser facilities such as the OMEGA Laser Facility. Our platform, Fresnel diffractive radiography, allows for high spatial resolution imaging of isochorically heated targets, resulting in notable diffractive effects at sharp density gradients that are influenced by transport properties such as thermal conductivity. We discuss initial results, highlighting the capabilities of the platform in measuring diffractive features with micrometer-level spatial resolution.

5.
AJNR Am J Neuroradiol ; 43(2): 176-180, 2022 02.
Article En | MEDLINE | ID: mdl-35027349

The incidental diagnosis of unruptured intracranial aneurysms has been increasing in the past several decades. A significant proportion represent small, low-risk, unruptured intracranial aneurysms for which there is equipoise on whether to offer treatment or conservative management. Given this uncertainty, patients may not always be comfortable with their physicians' recommendations. Herein, we use game theory to study the interactions between physicians and patients to determine how conflict and cooperation affect the management of small, low-risk, unruptured intracranial aneurysms. We constructed a game theory model of the interaction between physicians and patients with respect to decision-making for a small, low-risk, unruptured intracranial aneurysm in an asymptomatic patient when there is perceived equipoise between whether to treat or manage conservatively. Assuming that both the physician and patient are rational and eliciting individual patient preferences is not practical, the physician should play the game based on an ex ante probability of meeting a patient with a certain type of preference. This recommendation means that the expectations of the physician regarding the patient's preferences should guide the decision to offer treatment or conservative management as a first option for a small, asymptomatic, low-risk, unruptured intracranial aneurysm for which there is clinical equipoise.


Aneurysm, Ruptured , Endovascular Procedures , Intracranial Aneurysm , Physicians , Conservative Treatment , Game Theory , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/therapy
7.
Rev Sci Instrum ; 92(1): 013101, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33514249

We introduce a setup to measure high-resolution inelastic x-ray scattering at the High Energy Density scientific instrument at the European X-Ray Free-Electron Laser (XFEL). The setup uses the Si (533) reflection in a channel-cut monochromator and three spherical diced analyzer crystals in near-backscattering geometry to reach a high spectral resolution. An energy resolution of 44 meV is demonstrated for the experimental setup, close to the theoretically achievable minimum resolution. The analyzer crystals and detector are mounted on a curved-rail system, allowing quick and reliable changes in scattering angle without breaking vacuum. The entire setup is designed for operation at 10 Hz, the same repetition rate as the high-power lasers available at the instrument and the fundamental repetition rate of the European XFEL. Among other measurements, it is envisioned that this setup will allow studies of the dynamics of highly transient laser generated states of matter.

8.
Sci Rep ; 10(1): 14564, 2020 Sep 03.
Article En | MEDLINE | ID: mdl-32884061

We present a method to determine the bulk temperature of a single crystal diamond sample at an X-Ray free electron laser using inelastic X-ray scattering. The experiment was performed at the high energy density instrument at the European XFEL GmbH, Germany. The technique, based on inelastic X-ray scattering and the principle of detailed balance, was demonstrated to give accurate temperature measurements, within [Formula: see text] for both room temperature diamond and heated diamond to 500 K. Here, the temperature was increased in a controlled way using a resistive heater to test theoretical predictions of the scaling of the signal with temperature. The method was tested by validating the energy of the phonon modes with previous measurements made at room temperature using inelastic X-ray scattering and neutron scattering techniques. This technique could be used to determine the bulk temperature in transient systems with a temporal resolution of 50 fs and for which accurate measurements of thermodynamic properties are vital to build accurate equation of state and transport models.

9.
Sci Adv ; 5(11): eaaw1634, 2019 11.
Article En | MEDLINE | ID: mdl-31803829

Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. However, there remain many problems that are intractable for existing methods. In particular, many approaches face a huge computational barrier when modeling large numbers of coupled electrons and ions at finite temperature. Here, we address this shortfall with a new approach to modeling many-body quantum systems. On the basis of the Bohmian trajectory formalism, our new method treats the full particle dynamics with a considerable increase in computational speed. As a result, we are able to perform large-scale simulations of coupled electron-ion systems without using the adiabatic Born-Oppenheimer approximation.

10.
Nat Commun ; 10(1): 1758, 2019 04 15.
Article En | MEDLINE | ID: mdl-30988285

The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers.

11.
Rev Sci Instrum ; 89(10): 10F104, 2018 10.
Article En | MEDLINE | ID: mdl-30399942

We describe a setup for performing inelastic X-ray scattering and X-ray diffraction measurements at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. This technique is capable of performing high-, meV-resolution measurements of dynamic ion features in both crystalline and non-crystalline materials. A four-bounce silicon (533) monochromator was used in conjunction with three silicon (533) diced crystal analyzers to provide an energy resolution of ∼50 meV over a range of ∼500 meV in single shot measurements. In addition to the instrument resolution function, we demonstrate the measurement of longitudinal acoustic phonon modes in polycrystalline diamond. Furthermore, this setup may be combined with the high intensity laser drivers available at MEC to create warm dense matter and subsequently measure ion acoustic modes.

12.
Sci Rep ; 8(1): 11010, 2018 Jul 20.
Article En | MEDLINE | ID: mdl-30030516

Betatron radiation from laser wakefield accelerators is an ultrashort pulsed source of hard, synchrotron-like x-ray radiation. It emanates from a centimetre scale plasma accelerator producing GeV level electron beams. In recent years betatron radiation has been developed as a unique source capable of producing high resolution x-ray images in compact geometries. However, until now, the short pulse nature of this radiation has not been exploited. This report details the first experiment to utilize betatron radiation to image a rapidly evolving phenomenon by using it to radiograph a laser driven shock wave in a silicon target. The spatial resolution of the image is comparable to what has been achieved in similar experiments at conventional synchrotron light sources. The intrinsic temporal resolution of betatron radiation is below 100 fs, indicating that significantly faster processes could be probed in future without compromising spatial resolution. Quantitative measurements of the shock velocity and material density were made from the radiographs recorded during shock compression and were consistent with the established shock response of silicon, as determined with traditional velocimetry approaches. This suggests that future compact betatron imaging beamlines could be useful in the imaging and diagnosis of high-energy-density physics experiments.

13.
Nat Commun ; 9(1): 591, 2018 02 09.
Article En | MEDLINE | ID: mdl-29426891

Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.

15.
Nat Commun ; 8: 14125, 2017 01 30.
Article En | MEDLINE | ID: mdl-28134338

The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas.

16.
Sci Rep ; 4: 5214, 2014 Jun 09.
Article En | MEDLINE | ID: mdl-24909903

Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

17.
Phys Rev Lett ; 112(14): 145005, 2014 Apr 11.
Article En | MEDLINE | ID: mdl-24765980

We have employed fast electrons produced by intense laser illumination to isochorically heat thermal electrons in solid density carbon to temperatures of ∼10,000 K. Using time-resolved x-ray diffraction, the temperature evolution of the lattice ions is obtained through the Debye-Waller effect, and this directly relates to the electron-ion equilibration rate. This is shown to be considerably lower than predicted from ideal plasma models. We attribute this to strong ion coupling screening the electron-ion interaction.

18.
Phys Rev Lett ; 111(17): 175002, 2013 Oct 25.
Article En | MEDLINE | ID: mdl-24206498

Here, we report orbital-free density-functional theory (OF DFT) molecular dynamics simulations of the dynamic ion structure factor of warm solid density aluminum at T=0.5 eV and T=5 eV. We validate the OF DFT method in the warm dense matter regime through comparison of the static and thermodynamic properties with the more complete Kohn-Sham DFT. This extension of OF DFT to dynamic properties indicates that previously used models based on classical molecular dynamics may be inadequate to capture fully the low frequency dynamics of the response function.

19.
Sci Rep ; 2: 889, 2012.
Article En | MEDLINE | ID: mdl-23189238

Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (T(ele)≠T(ion)) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter.

20.
Can J Psychiatry ; 40(7): 418-20, 1995 Sep.
Article En | MEDLINE | ID: mdl-8548723

OBJECTIVE: To present a case report of folie simultanée in monozygotic twins. The literature describing folie à deux in twins is also reviewed and the common clinical findings are presented. METHOD: Case presentation and review of the literature. RESULTS: Clinical observations of monozygotic twins with folie simultanée suggest that the delusions tend to progress over time with each twin reinforcing the delusion in the second. CONCLUSIONS: The concept of a delusion resonating between individuals may account for the rapid progression and escalation of these delusions.


Diseases in Twins/genetics , Shared Paranoid Disorder/genetics , Adult , Delusions/diagnosis , Delusions/genetics , Delusions/psychology , Diseases in Twins/psychology , Female , Humans , Individuation , Shared Paranoid Disorder/diagnosis , Shared Paranoid Disorder/psychology , Social Isolation , Social Support , Suicide, Attempted/psychology , Twins, Monozygotic/genetics , Twins, Monozygotic/psychology
...