Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 96(4): 960-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26230017

RESUMEN

A major goal of community genetics is to understand the influence of genetic variation within a species on ecological communities. Although well-documented for some organisms, additional research is necessary to understand the relative and interactive effects of genotype and environment on biodiversity, identify mechanisms through which tree genotype influences communities, and connect this emerging field with existing themes in ecology. We employ an underutilized but ecologically significant group of organisms, epiphytic bark lichens, to understand the relative importance of Populus angustifolia (narrowleaf cottonwood) genotype and environment on associated organisms within the context of community assembly and host ontogeny. Several key findings emerged. (1) In a single common garden, tree genotype explained 18-33% and 51% of the variation in lichen community variables and rough bark cover, respectively. (2) Across replicated common gardens, tree genotype affected lichen species richness, total lichen cover, lichen species composition, and rough bark cover, whereas environment only influenced composition and there were no genotype by environment interactions. (3) Rough bark cover was positively correlated with total lichen cover and richness, and was associated with a shift in species composition; these patterns occurred with variation in rough bark cover among tree genotypes of the same age in common gardens and with increasing rough bark cover along a -40 year tree age gradient in a natural riparian stand. (4) In a common garden, 20-year-old parent trees with smooth bark had poorly developed lichen communities, similar to their 10-year-old ramets (root suckers) growing in close proximity, while parent trees with high rough bark cover had more developed communities than their ramets. These findings indicate that epiphytic lichens are influenced by host genotype, an effect that is robust across divergent environments. Furthermore, the response to tree genotype is likely the result of genetic variation in the timing of the ontogenetic shift from smooth to rough bark allowing communities on some genotypes to assemble faster than those on other genotypes. Organisms outside the typical sphere of community genetics, such as lichens, can help address critical issues and connect plant genotype effects to long-established streams of biological research, such as ontogeny and community assembly.


Asunto(s)
Ecosistema , Genotipo , Líquenes/fisiología , Corteza de la Planta/fisiología , Populus/fisiología , Líquenes/clasificación , Modelos Lineales , Corteza de la Planta/genética , Populus/genética
2.
Heredity (Edinb) ; 114(4): 387-96, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25585921

RESUMEN

Studies of genetic variation can clarify the role of geography and spatio-temporal variation of climate in shaping demography, particularly in temperate zone tree species with large latitudinal ranges. Here, we examined genetic variation in narrowleaf cottonwood, Populus angustifolia, a dominant riparian tree. Using multi-locus surveys of polymorphism in 363 individuals across the species' 1800 km latitudinal range, we found that, first, P. angustifolia has stronger neutral genetic structure than many forest trees (simple sequence repeat (SSR) FST=0.21), with major genetic groups corresponding to large apparent geographical barriers to gene flow. Second, using SSRs and putatively neutral sequenced loci, coalescent simulations indicated that populations diverged before the last glacial maximum (LGM), suggesting the presence of population structure before the LGM. Third, the LGM and subsequent warming appear to have had different influences on each of these distinct populations, with effective population size reduction in the southern extent of the range but major expansion in the north. These results are consistent with the hypothesis that climate and geographic barriers have jointly affected the demographic history of P. angustifolia, and point the importance of both factors as being instrumental in shaping genetic variation and structure in widespread forest trees.


Asunto(s)
Variación Genética , Genética de Población , Populus/genética , Flujo Génico , Geografía , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Dinámica Poblacional , Sudoeste de Estados Unidos
3.
J Evol Biol ; 24(2): 422-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21091573

RESUMEN

Genetic variation in plants is known to influence arthropod assemblages and species interactions. However, these influences may be contingent upon local environmental conditions. Here, we examine how plant genotype-based trophic interactions and patterns of natural selection change across environments. Studying the cottonwood tree, Populus angustifolia, the galling aphid, Pemphigus betae and its avian predators, we used three common gardens across an environmental gradient to examine the effects of plant genotype on gall abundance, gall size, aphid fecundity and predation rate on galls. Three patterns emerged: (i) plant genotype explained variation in gall abundance and predation, (ii) G×E explained variation in aphid fecundity, and environment explained variation in gall abundance and gall size, (iii) natural selection on gall size changed from directional to stabilizing across environments.


Asunto(s)
Áfidos/fisiología , Aves/fisiología , Conducta Alimentaria/fisiología , Cadena Alimentaria , Populus/genética , Populus/parasitología , Animales , Demografía , Interacciones Huésped-Parásitos , Árboles
4.
Heredity (Edinb) ; 100(1): 59-70, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17895905

RESUMEN

Cottonwoods are foundation riparian species, and hybridization among species is known to produce ecological effects at levels higher than the population, including effects on dependent species, communities and ecosystems. Because these patterns result from increased genetic variation in key cottonwood traits, novel applications of genetic tools (for example, QTL mapping) could be used to place broad-scale ecological research into a genomic perspective. In addition, linkage maps have been produced for numerous species within the genus, and, coupled with the recent publication of the Populus genome sequence, these maps present a unique opportunity for genome comparisons in a model system. Here, we conducted linkage analyses in order to (1) create a platform for QTL and candidate gene studies of ecologically important traits, (2) create a framework for chromosomal-scale perspectives of introgression in a natural population, and (3) enhance genome-wide comparisons using two previously unmapped species. We produced 246 backcross mapping (BC(1)) progeny by crossing a naturally occurring F(1) hybrid (Populus fremontii x P. angustifolia) to a pure P. angustifolia from the same population. Linkage analysis resulted in a dense linkage map of 541 AFLP and 111 SSR markers distributed across 19 linkage groups. These results compared favorably with other Populus linkage studies, and addition of SSR loci from the poplar genome project provided coarse alignment with the genome sequence. Preliminary applications of the data suggest that our map represents a useful framework for applying genomic research to ecological questions in a well-studied system, and has enhanced genome-wide comparisons in a model tree.


Asunto(s)
Mapeo Cromosómico , Ligamiento Genético , Populus/clasificación , Populus/genética , Quimera , Ecología , Marcadores Genéticos/genética , Genética de Población , Genoma de Planta , Desequilibrio de Ligamiento , Modelos Biológicos , Polimorfismo de Longitud del Fragmento de Restricción/genética , Árboles/clasificación , Árboles/genética
5.
Heredity (Edinb) ; 100(2): 121-31, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17047690

RESUMEN

Understanding the local and regional patterns of species distributions has been a major goal of ecological and evolutionary research. The notion that these patterns can be understood through simple quantitative rules is attractive, but while numerous scaling laws exist (e.g., metabolic, fractals), we are aware of no studies that have placed individual traits and community structure together within a genetics based scaling framework. We document the potential for a genetic basis to the scaling of ecological communities, largely based upon our long-term studies of poplars (Populus spp.). The genetic structure and diversity of these foundation species affects riparian ecosystems and determines a much larger community of dependent organisms. Three examples illustrate these ideas. First, there is a strong genetic basis to phytochemistry and tree architecture (both above- and belowground), which can affect diverse organisms and ecosystem processes. Second, empirical studies in the wild show that the local patterns of genetics based community structure scale up to western North America. At multiple spatial scales the arthropod community phenotype is related to the genetic distance among plants that these arthropods depend upon for survival. Third, we suggest that the familiar species-area curve, in which species richness is a function of area, is also a function of genetic diversity. We find that arthropod species richness is closely correlated with the genetic marker diversity and trait variance suggesting a genetic component to these curves. Finally, we discuss how genetic variation can interact with environmental variation to affect community attributes across geographic scales along with conservation implications.


Asunto(s)
Ecosistema , Populus/genética , Animales , Biodiversidad , Ambiente , Árboles/genética
6.
Mol Ecol ; 16(23): 5057-69, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17927708

RESUMEN

With the emerging field of community genetics, it is important to quantify the key mechanisms that link genetics and community structure. We studied cottonwoods in common gardens and in natural stands and examined the potential for plant chemistry to be a primary mechanism linking plant genetics and arthropod communities. If plant chemistry drives the relationship between plant genetics and arthropod community structure, then several predictions followed. We would find (i) the strongest correlation between plant genetic composition and chemical composition; (ii) an intermediate correlation between plant chemical composition and arthropod community composition; and (iii) the weakest relationship between plant genetic composition and arthropod community composition. Our results supported our first prediction: plant genetics and chemistry had the strongest correlation in the common garden and the wild. Our results largely supported our second prediction, but varied across space, seasonally, and according to arthropod feeding group. Plant chemistry played a larger role in structuring common garden arthropod communities relative to wild communities, free-living arthropods relative to leaf and stem modifiers, and early-season relative to late-season arthropods. Our results did not support our last prediction, as host plant genetics was at least as tightly linked to arthropod community structure as plant chemistry, if not more so. Our results demonstrate the consistency of the relationship between plant genetics and biodiversity. Additionally, plant chemistry can be an important mechanism by which plant genetics affects arthropod community composition, but other genetic-based factors are likely involved that remain to be measured.


Asunto(s)
Artrópodos/crecimiento & desarrollo , Ecosistema , Populus/genética , Animales , ADN de Plantas/genética , Genética de Población , Extractos Vegetales/análisis , Extractos Vegetales/química , Polimorfismo de Longitud del Fragmento de Restricción , Densidad de Población , Dinámica Poblacional , Populus/metabolismo , Populus/parasitología , Estaciones del Año
7.
Mol Ecol ; 15(13): 4215-28, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17054514

RESUMEN

We tested the hypothesis that leaf modifying arthropod communities are correlated with cottonwood host plant genetic variation from local to regional scales. Although recent studies found that host plant genetic composition can structure local dependent herbivore communities, the abiotic environment is a stronger factor than the genetic effect at increasingly larger spatial scales. In contrast to these studies we found that dependent arthropod community structure is correlated with both the cross type composition of cottonwoods and individual genotypes within local rivers up to the regional scale of 720,000 km(2) (Four Corner States region in the southwestern USA). Across this geographical extent comprising two naturally hybridizing cottonwood systems, the arthropod community follows a simple genetic similarity rule: genetically similar trees support more similar arthropod communities than trees that are genetically dissimilar. This relationship can be quantified with or without genetic data in Populus.


Asunto(s)
Artrópodos/genética , Populus/genética , Animales , Artrópodos/fisiología , Biodiversidad , Variación Genética , Genética de Población , Modelos Genéticos , Populus/fisiología , Ríos , Sudoeste de Estados Unidos
8.
Evolution ; 60(5): 991-1003, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16817539

RESUMEN

The evolutionary analysis of community organization is considered a major frontier in biology. Nevertheless, current explanations for community structure exclude the effects of genes and selection at levels above the individual. Here, we demonstrate a genetic basis for community structure, arising from the fitness consequences of genetic interactions among species (i.e., interspecific indirect genetic effects or IIGEs). Using simulated and natural communities of arthropods inhabiting North American cottonwoods (Populus), we show that when species comprising ecological communities are summarized using a multivariate statistical method, nonmetric multidimensional scaling (NMDS), the resulting univariate scores can be analyzed using standard techniques for estimating the heritability of quantitative traits. Our estimates of the broad-sense heritability of arthropod communities on known genotypes of cottonwood trees in common gardens explained 56-63% of the total variation in community phenotype. To justify and help interpret our empirical approach, we modeled synthetic communities in which the number, intensity, and fitness consequences of the genetic interactions among species comprising the community were explicitly known. Results from the model suggest that our empirical estimates of broad-sense community heritability arise from heritable variation in a host tree trait and the fitness consequences of IGEs that extend from tree trait to arthropods. When arthropod traits are heritable, interspecific IGEs cause species interactions to change, and community evolution occurs. Our results have implications for establishing the genetic foundations of communities and ecosystems.


Asunto(s)
Artrópodos/genética , Evolución Molecular , Populus/genética , Animales , Simulación por Computador , Ambiente , Variación Genética , América del Norte , Fenotipo , Selección Genética , Árboles/genética
9.
Oecologia ; 149(4): 668-75, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16804703

RESUMEN

The well-known deceleration of nitrogen (N) cycling in the soil resulting from addition of large amounts of foliar condensed tannins may require increased fine-root growth in order to meet plant demands for N. We examined correlations between fine-root production, plant genetics, and leaf secondary compounds in Populus angustifolia, P. fremontii, and their hybrids. We measured fine-root (<2 mm) production and leaf chemistry along an experimental genetic gradient where leaf litter tannin concentrations are genetically based and exert strong control on net N mineralization in the soil. Fine-root production was highly correlated with leaf tannins and individual tree genetic composition based upon genetic marker estimates, suggesting potential genetic control of compensatory root growth in response to accumulation of foliar secondary compounds in soils. We suggest, based on previous studies in our system and the current study, that genes for tannin production could link foliar chemistry and root growth, which may provide a powerful setting for external feedbacks between above- and belowground processes.


Asunto(s)
Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Populus/metabolismo , Proantocianidinas/metabolismo , Hibridación Genética , Polimorfismo de Longitud del Fragmento de Restricción , Populus/genética , Populus/crecimiento & desarrollo
10.
Mol Ecol ; 15(5): 1379-91, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16626460

RESUMEN

We define a genetic similarity rule that predicts how genetic variation in a dominant plant affects the structure of an arthropod community. This rule applies to hybridizing cottonwood species where plant genetic variation determines plant-animal interactions and structures a dependent community of leaf-modifying arthropods. Because the associated arthropod community is expected to respond to important plant traits, we also tested whether plant chemical composition is one potential intermediate link between plant genes and arthropod community composition. Two lines of evidence support our genetic similarity rule. First, in a common garden experiment we found that trees with similar genetic compositions had similar chemical compositions and similar arthropod compositions. Second, in a wild population, we found a similar relationship between genetic similarity in cottonwoods and the dependent arthropod community. Field data demonstrate that the relationship between genes and arthropods was also significant when the hybrids were analysed alone, i.e. the pattern is not dependent upon the inclusion of both parental species. Because plant-animal interactions and natural hybridization are common to diverse plant taxa, we suggest that a genetic similarity rule is potentially applicable, and may be extended, to other systems and ecological processes. For example, plants with similar genetic compositions may exhibit similar litter decomposition rates. A corollary to this genetic similarity rule predicts that in systems with low plant genetic variability, the environment will be a stronger factor structuring the dependent community. Our findings argue that the genetic composition of a dominant plant can structure higher order ecological processes, thus placing community and ecosystem ecology within a genetic and evolutionary framework. A genetic similarity rule also has important conservation implications because the loss of genetic diversity in one species, especially dominant or keystone species that define many communities, may cascade to negatively affect the rest of the dependent community.


Asunto(s)
Artrópodos/genética , Animales , Artrópodos/fisiología , Ambiente , Variación Genética , Modelos Biológicos , Modelos Genéticos , Polimorfismo de Longitud del Fragmento de Restricción , Populus/genética , Populus/parasitología , Populus/fisiología , Árboles/genética , Árboles/parasitología , Árboles/fisiología
11.
Oecologia ; 139(2): 288-97, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14767756

RESUMEN

Genetic variation in dominant species can affect plant and ecosystem functions in natural systems through multiple pathways. Our study focuses on how genetic variation in a dominant riparian tree ( Populus fremontii, P. angustifolia and their natural F(1) and backcross hybrids) affects whole-tree water use, and its potential ecosystem implications. Three major patterns were found. First, in a 12-year-old common garden with trees of known genetic makeup, hybrids had elevated daily integrated leaf-specific transpiration ( E(tl); P=0.013) and average canopy conductance ( G(c); P=0.037), with both E(tl) and G(c) approximately 30% higher in hybrid cross types than parental types. Second, delta(13)C values of leaves from these same trees were significantly more negative in hybrids ( P=0.004), and backcross hybrids had significantly more negative values than all other F(1) hybrid and parental types ( P<0.001). Third, in the wild, a similar pattern was found in leaf delta(13)C values where both hybrid cross types had the lowest values ( P<0.001) and backcross hybrids had lower delta(13)C values than any other tree type ( P<0.001). Our findings have two important implications: (1). the existence of a consistent genetic difference in whole-tree physiology suggests that whole-tree gas and water exchange could be another pathway through which genes could affect ecosystems; and (2). such studies are important because they seek to quantify the genetic variation that exists in basic physiological processes-such knowledge could ultimately place ecosystem studies within a genetic framework.


Asunto(s)
Ecosistema , Variación Genética , Populus/crecimiento & desarrollo , Populus/fisiología , Equilibrio Hidroelectrolítico , Isótopos de Carbono/análisis , Dinámica Poblacional , Ríos , Árboles
12.
Microb Ecol ; 45(4): 340-52, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12704562

RESUMEN

In terrestrial ecosystems, changes in environmental conditions that affect plant performance cause a cascade of effects through many trophic levels. In a 2-year field study, seasonal abundance measurements were conducted for fast-growing bacterial heterotrophs, humate-degrading actinomycetes, fungal heterotrophs, and fluorescent pseudomonads that represent the decomposers in soil. Links between plant health and soil microbiota abundance in pinyon rhizospheres were documented across two soil types: a dry, nutrient-poor volcanic cinder field and a sandy-loam soil. On the stressful cinder fields, we identified relationships between soil decomposer abundance, pinyon age, and stress due to insect herbivory. Across seasonal variation, consistent differences in microbial decomposer abundance were identified between the cinders and sandy-loam soil. Abundance of bacterial heterotrophs and humate-degrading actinomycetes was affected by both soil nutritional status and the pinyon rhizosphere. In contrast, abundance of the fungal heterotrophs and fluorescent pseudomonads was affected primarily by the pinyon rhizosphere. On the cinder field, the three bacterial groups were more abundant on 150-year-old trees than on 60-year-old trees, whereas fungal heterotrophs were unaffected by tree age. Fungal heterotrophs and actinomycetes were more abundant on insect-resistant trees than on susceptible trees, but the opposite was true for the fluorescent pseudomonads. Although all four groups were present in all the environments, the four microbial groups were affected differently by the pinyon rhizosphere, by tree age, and by tree stress caused by the cinder soil and insect herbivory.


Asunto(s)
Sustancias Húmicas/metabolismo , Pinus , Raíces de Plantas/microbiología , Microbiología del Suelo , Animales , Ecosistema , Hongos , Insectos , Dinámica Poblacional , Pseudomonadaceae , Estaciones del Año
13.
Evolution ; 55(7): 1325-35, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11525457

RESUMEN

Hybrids have long been recognized as a potential pathway for gene flow between species that can have important consequences for evolution and conservation biology. However, few studies have demonstrated that genes from one species can introgress or invade another species over a broad geographic area. Using 35 genetically mapped restriction fragment length polymorphism (RFLP) markers of two species of cottonwoods (Populus fremontii x P. angustifolia) and their hybrids (n = 550 trees), we showed that the majority of the genome is prohibited from introgressing from one species into the other. However, this barrier was not absolute; Fremont cpDNA and mtDNA were found throughout the geographic range of narrowleaf cottonwood, and 20% of the nuclear markers of Fremont cottonwood introgressed varying distances (some over 100 km) into the recipient species' range. Rates of nuclear introgression were variable, but two nuclear markers introgressed as fast as the haploid, cytoplasmically inherited chloroplast and mitochondrial markers. Our genome-wide analysis provides evidence for positive, negative, and neutral effects of introgression. For example, we predict that DNA fragments that introgress through several generations of backcrossing will be small, because small fragments are less likely to contain deleterious genes. These results argue that recombination will be important, that introgression can be very selective, and that evolutionary forces within the hybrid population to effectively "filter" gene flow between species. A strong filter may make introgression adaptive, prevent genetic assimilation, lead to relaxed isolating mechanisms, and contribute to the stability of hybrid zones. Thus, rather than hybridization being a negative factor as is commonly argued, natural hybridization between native species may provide important genetic variation that impacts both ecological and evolutionary processes. Finally, we propose two hypotheses that contrast the likelihood of contemporary versus ancient introgression in this system.


Asunto(s)
Transferencia de Gen Horizontal , Hibridación Genética/genética , Magnoliopsida/genética , Evolución Biológica , Núcleo Celular/genética , Cruzamientos Genéticos , Citoplasma/genética , ADN de Cloroplastos/genética , ADN Mitocondrial/genética , Marcadores Genéticos/genética , Genoma de Planta , Geografía , Magnoliopsida/citología , Polimorfismo de Longitud del Fragmento de Restricción , Recombinación Genética , Especificidad de la Especie
14.
Science ; 293(5530): 643-50, 2001 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-11474100

RESUMEN

Studies that combine experimental manipulations with long-term data collection reveal elaborate interactions among species that affect the structure and dynamics of ecosystems. Research programs in U.S. desert shrubland and pinyon-juniper woodland have shown that (i) complex dynamics of species populations reflect interactions with other organisms and fluctuating climate; (ii) genotype x environment interactions affect responses of species to environmental change; (iii) herbivore-resistance traits of dominant plant species and impacts of "keystone" animal species cascade through the system to affect many organisms and ecosystem processes; and (iv) some environmental perturbations can cause wholesale reorganization of ecosystems because they exceed the ecological tolerances of dominant or keystone species, whereas other changes may be buffered because of the compensatory dynamics of complementary species.


Asunto(s)
Cycadopsida , Ecosistema , Roedores , Árboles , Animales , Arizona , Clima Desértico , Ambiente , Genotipo , Mariposas Nocturnas/fisiología , Plantas , Dinámica Poblacional , Roedores/fisiología , Factores de Tiempo , Tiempo (Meteorología)
15.
Evolution ; 54(6): 1938-46, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11209771

RESUMEN

To examine how genetic variation in a plant population affects arthropod community richness and composition, we quantified the arthropod communities on a synthetic population of Eucalyptus amygdalina, E. risdonii, and their F1 and advanced-generation hybrids. Five major patterns emerged. First, the pure species and hybrid populations supported significantly different communities. Second, species richness was significantly greatest on hybrids (F1 > F2 > E. amygdalina > E. risdonii). These results are similar to those from a wild population of the same species and represent the first case in which both synthetic and wild population studies confirm a genetic component to community structure. Hybrids also acted as centers of biodiversity by accumulating both the common and specialist taxa of both parental species (100% in the wild and 80% in the synthetic population). Third, species richness was significantly greater on F1s than the single F2 family, suggesting that the increased insect abundance on hybrids may not be caused by the breakup of coadapted gene complexes. Fourth, specialist arthropod taxa were most likely to show a dominance response to F1 hybrids, whereas generalist taxa exhibited a susceptible response. Fifth, in an analysis of 31 leaf terpenoids that are thought to play a role in plant defense, hybrids were generally intermediate to the parental chemotypes. Within the single F2 family, we found significant associations between the communities of individual trees and five individual oil components, including oil yield, demonstrating that there is a genetic effect on plant defensive chemistry that, in turn, may affect community structure. These studies argue that hybridization has important community-level consequences and that the genetic variation present in hybrid zones can be used to explore the genetic-based mechanisms that structure communities.


Asunto(s)
Artrópodos/genética , Eucalyptus/genética , Plantas Medicinales , Simbiosis , Animales , Quimera/genética , Evolución Molecular , Variación Genética , Aceites , Hojas de la Planta/parasitología , Simbiosis/genética
16.
Oecologia ; 123(1): 82-89, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28308747

RESUMEN

We examined the potential of a common herbivore to indirectly influence other diverse community members by providing habitat. Larvae of the leafroller Anacampsis niveopulvella commonly construct shelters by rolling leaves of cottonwood trees. These leaf rolls are later colonized by other arthropods. We first documented 4 times greater species richness and 7 times greater abundance on cottonwood shoots that contained a rolled leaf compared to adjacent shoots without leaf rolls. Second, with both removal and addition experiments, we showed that leaf rolls are responsible for these differences in arthropod assemblages. Leaf roll removal caused a 5-fold decline in richness and a 7-fold decline in abundance; leaf roll addition resulted in a 2.5-fold increase in richness and a 6-fold increase in abundance. Third, to determine whether rolled leaves are colonized for food or for shelter, we compared colonization of natural and artificial leaf rolls. Both richness and abundance were approximately 2-fold greater in artificial leaf rolls, indicating that leaf rolls are colonized primarily for shelter. Fourth, in a natural hybrid zone we found that leafroller densities were 2-fold greater on backcross hybrids than on F1 hybrids. These differences are likely associated with genetically-based differences in leaf morphology and/or leaf chemistry. Ultimately, plant genotype affects positive indirect interactions that have the potential to affect community structure. This study and others demonstrate that shelter builders (i.e., leafrollers and gall formers) enhance biodiversity, while free-feeders are more likely to negatively affect biodiversity.

17.
Oecologia ; 123(1): 99-107, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28308750

RESUMEN

Cottonwoods are dominant riparian trees of the western United States and are known for their propensity to hybridize. We compared the decomposition of leaf litter from two species (Populus angustifolia and P. fremontii) and their hybrids. Three patterns were found. First, in one terrestrial and two aquatic experiments, decomposition varied twofold among tree types. Second, backcross hybrid leaves decomposed more slowly than those of either parent. Third, the variation in decomposition between F1 and backcross hybrids was as great as the variation between species. These results show significant differences in decomposition in a low-diversity system, where >80% of the leaf litter comes from just two species and their hybrids. Mechanistically, high concentrations of condensed tannins in leaves appear to inhibit decomposition (r 2=0.63). The initial condensed tannin concentration was high in narrowleaf leaves, low or undetectable in Fremont leaves, and intermediate in F1 hybrid leaves (additive inheritance). Backcross hybrids were high in condensed tannins and were not different from narrowleaf (dominant inheritance). Neither nitrogen (N) concentration nor the ratio of ash-free dry weight to N (a surrogate for carbon:nitrogen ratio) were significantly correlated with decomposition. The N content of leaf material at the end of each year's experiment was inversely correlated with rates of litter mass loss and varied 1.6- to 2.1-fold among tree classes. This result suggests that hybrids and their parental species are used differently by the microbial community.

18.
Am Nat ; 149(5): 824-41, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-18811251

RESUMEN

Herbivores and mycorrhizal fungi are important associates of most plants, but little is known about how these organisms interact. In a 9-yr experiment, we examined how the pinyon needle scale (Matsucoccus acalyptus) affects and is affected by the ectomycorrhizal mutualists found on the roots of scale-resistant and -susceptible pinyon pines (Pinus edulis). Three major results emerged. First, removal experiments demonstrated that scales negatively affected ectomycorrhiza. Second, although ectomycorrhiza could either positively or negatively influence scale performance by improving plant vigor or increasing plant investment in antiherbivore defenses, we found no ectomycorrhizal effect on scale mortality when we experimentally enhanced levels of ectomycorrhiza. This represented the first test of whether ectomycorrhiza promote plant resistance and contrasted with studies showing that arbuscular mycorrhiza negatively affected herbivores. Third, pinyon resistance to scales mediated the asymmetrical interaction between fungal mutualists and scale herbivores. High scale densities suppressed ectomycorrhizal colonization, but only on trees susceptible to scales. Similarities between mycorrhiza-herbivore interactions and competitive interactions among herbivores suggest broader generalities in the way aboveground herbivores interact with belowground plant associates. However, because mycorrhiza are mutualists, mycorrhiza-herbivore interactions do not fit within traditional competition paradigms. The widespread occurrence and importance of both herbivores and mycorrhiza argue for incorporating their interactions into ecological theory.

19.
Oecologia ; 105(2): 199-204, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28307083

RESUMEN

Interactions among shoots within plant modules could allow gall-insects to acquire resources from other plant parts near the feeding sites. As a result, nearby plant parts may act as a "functional resource", or extended resource base. We tested for functional interconections between galls and adjacent ungalled shoots in Adelges cooleyi Gil. (Homoptera: Adelgidae) on Picea engelmanni, Engelmann spruce. Observations of gall and surrounding shoot weights showed that gall weights were twice normal shoot weights, but that surrounding shoot weights were unaffected. Reducing photosynthate availability by covering galls or surrounding shoots with opaque cloth suggested that functional interconnections exist among them; covering galls reduced surrounding current-year ungalled shoot weight, and covering surrounding shoots reduced their weight even further, but neither covering treatment affected gall or gall-insect weight. These patterns suggest that surrounding shoots constitute an extended and flexibly utilized resource base for adelgid galls. Resources made available via functional interconnections appeared to be equally available throughout adelgid galls. No differences were found in gall-insect performance in parts of the gall closer to connections with surrounding shoots compared to more distantly-located gall-insects. Further studies are required to examine patterns of resource movement among unmanipulated galls and shoots. Functional resources may be common features of plant/gall-insect interactions, potentially playing an important role in gall-insect reproductive success and habitat selection.

20.
Oecologia ; 97(4): 481-490, 1994 May.
Artículo en Inglés | MEDLINE | ID: mdl-28313737

RESUMEN

We found the hybrid zone between Eucalyptus amygdalina and Eucalyptus risdonii to be a center of insect and fungal species richness and abundance. Of 40 taxa examined, 73% were significantly more abundant in the hybrid zone than in pure zones, 25% showed on significant differences, and 2% were most abundant on a pure host species. The average hybrid tree supported 53% more insect and fungal species, and relative abundances were, on average, 4 times greater on hybrids than on either eucalypt species growing in pure stands. Hybrids may act as refugia for rare species: 5 of 40 species were largely restricted to the hybrid zone. Also, 50% of the species coexisted only in the hybrid zone, making for mique species assemblages. Although hybrids support more species and greater abundances, all hybrids are not equal: 68% of the 40 taxa examined were significantly more abundant on one hybrid phenotype than another. While herbivore concentrations on F1 type intermediates were rare, concentrations were common on phenotypes resembling backcrosses either to E. amygdalina or E. risdonii. For specialist herbivores, the hybrid phenotype most heavily utilized appears to be determined by its phenotypic affinity to its host species. Generalists exhibit an overall greater abundance on hybrids, but are less likely to utilize one hybrid phenotype over another. Mechanistic explanations for these distributions are numerous and probably species specific, but are likely to include: increased genetic susceptibility of hybrids due to hybrid breakdown; increased stress in the hybrid zone resulting in greater plant susceptibility; and a greater diversity of resources in the hybrid zone which could support more species. Seed capsule production by hybrids and their parental species is negatively correlated with herbivory. However, it is difficult to determine whether herbivores cause this pattern as hybrids may have inherently lower sexual reproduction. Laws enacted to protect rare and endangered species do not include hybrids. We argue that a re-examination of our current "hybrid policy" is warranted. Plant hybrid zones are centers of plant evolution and speciation, sources of economically important plants and potential biocontrol agents, and, as our study suggests, also provide essential habitats for phytophagous communities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA