Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Sci Adv ; 10(7): eadj4137, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38354232

KRAS, the most frequently mutated oncogene in human cancer, produces two isoforms, KRAS4a and KRAS4b, through alternative splicing. These isoforms differ in exon 4, which encodes the final 15 residues of the G-domain and hypervariable regions (HVRs), vital for trafficking and membrane localization. While KRAS4b has been extensively studied, KRAS4a has been largely overlooked. Our multidisciplinary study compared the structural and functional characteristics of KRAS4a and KRAS4b, revealing distinct structural properties and thermal stability. Position 151 influences KRAS4a's thermal stability, while position 153 affects binding to RAF1 CRD protein. Nuclear magnetic resonance analysis identified localized structural differences near sequence variations and provided a solution-state conformational ensemble. Notably, KRAS4a exhibits substantial transcript abundance in bile ducts, liver, and stomach, with transcript levels approaching KRAS4b in the colon and rectum. Functional disparities were observed in full-length KRAS variants, highlighting the impact of HVR variations on interaction with trafficking proteins and downstream effectors like RAF and PI3K within cells.


Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Molecular Conformation , Protein Isoforms/genetics , Proto-Oncogene Proteins p21(ras)/genetics
2.
Curr Biol ; 31(20): 4667-4674.e6, 2021 10 25.
Article En | MEDLINE | ID: mdl-34478643

In most vertebrates, the demand for glucose as the primary substrate for cellular respiration is met by the breakdown of complex carbohydrates, or energy is obtained by protein and lipid catabolism. In contrast, a few bat and bird species have convergently evolved to subsist on nectar, a sugar-rich mixture of glucose, fructose, and sucrose.1-4 How these nectar-feeders have adapted to cope with life-long high sugar intake while avoiding the onset of metabolic syndrome and diabetes5-7 is not understood. We analyzed gene sequences obtained from 127 taxa, including 22 nectar-feeding bat and bird genera that collectively encompass four independent origins of nectarivory. We show these divergent taxa have undergone pervasive molecular adaptation in sugar catabolism pathways, including parallel selection in key glycolytic and fructolytic enzymes. We also uncover convergent amino acid substitutions in the otherwise evolutionarily conserved aldolase B (ALDOB), which catalyzes rate-limiting steps in fructolysis and glycolysis, and the mitochondrial gatekeeper pyruvate dehydrogenase (PDH), which links glycolysis and the tricarboxylic acid cycle. Metabolomic profile and enzyme functional assays are consistent with increased respiratory flux in nectar-feeding bats and help explain how these taxa can both sustain hovering flight and efficiently clear simple sugars. Taken together, our results indicate that nectar-feeding bats and birds have undergone metabolic adaptations that have enabled them to exploit a unique energy-rich dietary niche among vertebrates.


Chiroptera , Animals , Birds/metabolism , Carbohydrates , Chiroptera/genetics , Energy Metabolism , Glucose/metabolism , Plant Nectar/metabolism , Sugars/metabolism
3.
Structure ; 29(3): 284-291.e3, 2021 03 04.
Article En | MEDLINE | ID: mdl-33264606

Cataracts involve the deposition of the crystallin proteins in the vertebrate eye lens, causing opacification and blindness. They are associated with either genetic mutation or protein damage that accumulates over the lifetime of the organism. Deamidation of Asn residues in several different crystallins has been observed and is frequently invoked as a cause of cataract. Here, we investigated the properties of Asp variants, deamidation products of γD-crystallin, by solution NMR, X-ray crystallography, and other biophysical techniques. No substantive structural or stability changes were noted for all seven Asn to Asp γD-crystallins. Importantly, no changes in diffusion interaction behavior could be detected. Our combined experimental results demonstrate that introduction of single Asp residues on the surface of γD-crystallin by deamidation is unlikely to be the driver of cataract formation in the eye lens.


Amino Acid Substitution , Molecular Dynamics Simulation , gamma-Crystallins/chemistry , Asparagine/chemistry , Asparagine/genetics , Deamination , Humans , Protein Stability , gamma-Crystallins/genetics , gamma-Crystallins/metabolism
4.
Structure ; 27(9): 1427-1442.e4, 2019 09 03.
Article En | MEDLINE | ID: mdl-31327662

Betaglycan (BG) and endoglin (ENG), homologous co-receptors of the TGF-ß family, potentiate the signaling activity of TGF-ß2 and inhibin A, and BMP-9 and BMP-10, respectively. BG exists as monomer and forms 1:1 growth factor (GF) complexes, while ENG exists as a dimer and forms 2:1 GF complexes. Herein, the structure of the BG orphan domain (BGO) reveals an insertion that blocks the region that the endoglin orphan domain (ENGO) uses to bind BMP-9, preventing it from binding in the same manner. Using binding studies with domain-deleted forms of TGF-ß and BGO, as well as small-angle X-ray scattering data, BGO is shown to bind its cognate GF in an entirely different manner compared with ENGO. The alternative interfaces likely engender BG and ENG with the ability to selectively bind and target their cognate GFs in a unique temporal-spatial manner, without interfering with one another or other TGF-ß family GFs.


Endoglin/chemistry , Endoglin/metabolism , Proteoglycans/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factor 2/metabolism , HEK293 Cells , Humans , Protein Structure, Secondary , Rats , Scattering, Small Angle , X-Ray Diffraction , Zebrafish
5.
J Biol Chem ; 293(34): 13204-13213, 2018 08 24.
Article En | MEDLINE | ID: mdl-29970614

The pyruvate dehydrogenase multienzyme complex (PDHc) connects glycolysis to the tricarboxylic acid cycle by producing acetyl-CoA via the decarboxylation of pyruvate. Because of its pivotal role in glucose metabolism, this complex is closely regulated in mammals by reversible phosphorylation, the modulation of which is of interest in treating cancer, diabetes, and obesity. Mutations such as that leading to the αV138M variant in pyruvate dehydrogenase, the pyruvate-decarboxylating PDHc E1 component, can result in PDHc deficiency, an inborn error of metabolism that results in an array of symptoms such as lactic acidosis, progressive cognitive and neuromuscular deficits, and even death in infancy or childhood. Here we present an analysis of two X-ray crystal structures at 2.7-Å resolution, the first of the disease-associated human αV138M E1 variant and the second of human wildtype (WT) E1 with a bound adduct of its coenzyme thiamin diphosphate and the substrate analogue acetylphosphinate. The structures provide support for the role of regulatory loop disorder in E1 inactivation, and the αV138M variant structure also reveals that altered coenzyme binding can result in such disorder even in the absence of phosphorylation. Specifically, both E1 phosphorylation at αSer-264 and the αV138M substitution result in disordered loops that are not optimally oriented or available to efficiently bind the lipoyl domain of PDHc E2. Combined with an analysis of αV138M activity, these results underscore the general connection between regulatory loop disorder and loss of E1 catalytic efficiency.


Dihydrolipoyllysine-Residue Acetyltransferase/chemistry , Dihydrolipoyllysine-Residue Acetyltransferase/metabolism , Mutation , Pyruvate Dehydrogenase Complex Deficiency Disease/genetics , Pyruvate Dehydrogenase Complex/chemistry , Pyruvate Dehydrogenase Complex/metabolism , Thiamine Pyrophosphate/metabolism , Catalysis , Crystallography, X-Ray , Dihydrolipoyllysine-Residue Acetyltransferase/genetics , Humans , Kinetics , Models, Molecular , Protein Conformation , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex Deficiency Disease/enzymology
6.
Biophys J ; 114(4): 839-855, 2018 02 27.
Article En | MEDLINE | ID: mdl-29490245

Multidomain proteins with two or more independently folded functional domains are prevalent in nature. Whereas most multidomain proteins are linked linearly in sequence, roughly one-tenth possess domain insertions where a guest domain is implanted into a loop of a host domain, such that the two domains are connected by a pair of interdomain linkers. Here, we characterized the influence of the interdomain linkers on the structure and dynamics of a domain-insertion protein in which the guest LysM domain is inserted into a central loop of the host CVNH domain. Expanding upon our previous crystallographic and NMR studies, we applied SAXS in combination with NMR paramagnetic relaxation enhancement to construct a structural model of the overall two-domain system. Although the two domains have no fixed relative orientation, certain orientations were found to be preferred over others. We also assessed the accuracies of molecular mechanics force fields in modeling the structure and dynamics of tethered multidomain proteins by integrating our experimental results with microsecond-scale atomistic molecular dynamics simulations. In particular, our evaluation of two different combinations of the latest force fields and water models revealed that both combinations accurately reproduce certain structural and dynamical properties, but are inaccurate for others. Overall, our study illustrates the value of integrating experimental NMR and SAXS studies with long timescale atomistic simulations for characterizing structural ensembles of flexibly linked multidomain systems.


Fungal Proteins/chemistry , Fungal Proteins/metabolism , Magnaporthe/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Scattering, Small Angle , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation , Protein Domains , X-Ray Diffraction
7.
Nat Commun ; 8: 15137, 2017 05 05.
Article En | MEDLINE | ID: mdl-28474685

Cataracts cause vision loss through the large-scale aggregation of eye lens proteins as a result of ageing or congenital mutations. The development of new treatments is hindered by uncertainty about the nature of the aggregates and their mechanism of formation. We describe the structure and morphology of aggregates formed by the P23T human γD-crystallin mutant associated with congenital cataracts. At physiological pH, the protein forms aggregates that look amorphous and disordered by electron microscopy, reminiscent of the reported formation of amorphous deposits by other crystallin mutants. Surprisingly, solid-state NMR reveals that these amorphous deposits have a high degree of structural homogeneity at the atomic level and that the aggregated protein retains a native-like conformation, with no evidence for large-scale misfolding. Non-physiological destabilizing conditions used in many in vitro aggregation studies are shown to yield qualitatively different, highly misfolded amyloid-like fibrils.


Cataract/genetics , Protein Aggregates , Protein Aggregation, Pathological/genetics , gamma-Crystallins/genetics , Cataract/congenital , Humans , Hydrogen-Ion Concentration , In Vitro Techniques , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Mutation , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Protein Conformation , Protein Folding , gamma-Crystallins/metabolism , gamma-Crystallins/ultrastructure
8.
Biophys J ; 112(6): 1135-1146, 2017 Mar 28.
Article En | MEDLINE | ID: mdl-28355541

A cataract is a pathological condition characterized by the clouding of the normally clear eye lens brought about by deposition of crystallin proteins in the lens fiber cells. These protein aggregates reduce visual acuity by scattering or blocking incoming light. Chemical damage to proteins of the crystallin family, accumulated over a lifetime, leads to age-related cataract, whereas inherited mutations are associated with congenital or early-onset cataract. The V75D mutant of γD-crystallin is associated with congenital cataract in mice and was previously shown to un/fold via a partially folded intermediate. Here, we structurally characterized the stable equilibrium urea unfolding intermediate of V75D at the ensemble level using solution NMR and small-angle x-ray scattering. Our data show that, in the intermediate, the C-terminal domain retains a folded conformation that is similar to the native wild-type protein, whereas the N-terminal domain is unfolded and comprises an ensemble of random conformers, without any detectable residual structural propensities.


Cataract , Protein Folding , Scattering, Small Angle , X-Ray Diffraction , gamma-Crystallins/chemistry , Animals , Humans , Magnetic Resonance Spectroscopy , Mice , Models, Molecular , Protein Structure, Secondary , Protein Unfolding
9.
Structure ; 25(3): 496-505, 2017 03 07.
Article En | MEDLINE | ID: mdl-28238532

ßγ-Crystallins are long-lived eye lens proteins that are crucial for lens transparency and refractive power. Each ßγ-crystallin comprises two homologous domains, which are connected by a short linker. γ-Crystallins are monomeric, while ß-crystallins crystallize as dimers and multimers. In the crystal, human ßB2-crystallin is a domain-swapped dimer while the N-terminally truncated ßB1-crystallin forms a face-en-face dimer. Combining and integrating data from multi-angle light scattering, nuclear magnetic resonance, and small-angle X-ray scattering of full-length and terminally truncated human ßB2-crystallin in solution, we show that both these ßB2-crystallin proteins are dimeric, possess C2 symmetry, and are more compact than domain-swapped dimers. Importantly, no inter-molecular paramagnetic relaxation enhancement effects compatible with domain swapping were detected. Our collective experimental results unambiguously demonstrate that, in solution, human ßB2-crystallin is not domain swapped and exhibits a face-en-face dimer structure similar to the crystal structure of truncated ßB1-crystallin.


beta-Crystallin B Chain/chemistry , beta-Crystallin B Chain/genetics , Crystallography, X-Ray , Humans , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary , Scattering, Small Angle , Sequence Deletion , X-Ray Diffraction
10.
J Mol Biol ; 425(13): 2372-81, 2013 Jul 10.
Article En | MEDLINE | ID: mdl-23648838

It is now widely recognized that dynamics are important to consider for understanding allosteric protein function. However, dynamics occur over a wide range of timescales, and how these different motions relate to one another is not well understood. Here, we report an NMR relaxation study of dynamics over multiple timescales at both backbone and side-chain sites upon an allosteric response to phosphorylation. The response regulator, Escherichia coli CheY, allosterically responds to phosphorylation with a change in dynamics on both the microsecond-to-millisecond (µs-ms) timescale and the picosecond-to-nanosecond (ps-ns) timescale. We observe an apparent decrease and redistribution of µs-ms dynamics upon phosphorylation (and accompanying Mg(2+) saturation) of CheY. Additionally, methyl groups with the largest changes in ps-ns dynamics localize to the regions of conformational change measured by µs-ms dynamics. The limited spread of changes in ps-ns dynamics suggests a distinct relationship between motions on the µs-ms and ps-ns timescales in CheY. The allosteric mechanism utilized by CheY highlights the diversity of roles dynamics play in protein function.


Allosteric Regulation , Bacterial Proteins/chemistry , Membrane Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli/physiology , Escherichia coli Proteins , Kinetics , Magnetic Resonance Spectroscopy , Membrane Proteins/metabolism , Methyl-Accepting Chemotaxis Proteins , Phosphorylation , Protein Conformation , Protein Processing, Post-Translational , Signal Transduction
11.
FEBS J ; 280(9): 2056-67, 2013 May.
Article En | MEDLINE | ID: mdl-23480609

Burkholderia oklahomensis EO147 agglutinin (BOA) is a 29 kDa member of the Oscillatoria agardhii agglutinin (OAA) family of lectins. Members of the OAA family recognize high-mannose glycans, and, by binding to the HIV envelope glycoprotein 120 (gp120), block the virus from binding to and entering the host cell, thereby inhibiting infection. OAA-family lectins comprise either one or two homologous domains, with a single domain possessing two glycan binding sites. We solved the structure of BOA in the ligand-free form as well as in complex with four molecules of 3α,6α-mannopentaose, the core unit of the N-linked high-mannose structures found on gp120 in vivo. This is the first structure of a double-domain OAA-family lectin in which all four binding sites are occupied by ligand. The structural details of the BOA-glycan interactions presented here, together with determination of affinity constants and HIV inactivation data, shed further light onto the structure-function relationship in this important class of anti-HIV proteins.


Agglutinins/chemistry , Anti-HIV Agents/chemistry , Bacterial Proteins/chemistry , Burkholderia , Mannose-Binding Lectins/chemistry , Agglutinins/pharmacology , Amino Acid Sequence , Anti-HIV Agents/pharmacology , Bacterial Proteins/pharmacology , Binding Sites , Carbohydrate Conformation , Carbohydrate Sequence , Cell Line , Conserved Sequence , Crystallography, X-Ray , HIV-1/drug effects , HIV-1/physiology , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Mannans/chemistry , Mannose-Binding Lectins/pharmacology , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary
12.
Proteins ; 79(3): 916-24, 2011 Mar.
Article En | MEDLINE | ID: mdl-21287622

Increasing awareness of the possible role of internal dynamics in protein function has led to the development of new methods for experimentally characterizing protein dynamics across multiple time scales, especially using NMR spectroscopy. A few analyses of the conformational dynamics of proteins ranging from nonallosteric single domains to multidomain allosteric enzymes are now available; however, demonstrating a connection between dynamics and function remains difficult on account of the comparative lack of studies examining both changes in dynamics and changes in function in response to the same perturbations. In previous work, we characterized changes in structure and dynamics on the ps­ns time scale resulting from hydrophobic core mutations in chymotrypsin inhibitor 2 and found that there are moderate, persistent global changes in dynamics in the absence of gross structural changes (Whitley et al., Biochemistry 2008;47:8566­8576). Here, we assay those and additional mutants for inhibitory ability toward the serine proteases elastase and chymotrypsin to determine the effects of mutation on function. Results indicate that core mutation has only a subtle effect on CI2 function. Using chemical shifts, we also studied the effect of complex formation on CI2 structure and found that perturbations are greatest at the complex interface but also propagate toward CI2's hydrophobic core. The structure­dynamics­function data set completed here suggests that dynamics plays a limited role in the function of this small model system, although we do observe a correlation between nanosecond-scale reactive loop motions and inhibitory ability for mutations at one key position in the hydrophobic core.


Peptides/chemistry , Peptides/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Allosteric Site , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Structure-Activity Relationship
13.
Curr Protein Pept Sci ; 10(2): 116-27, 2009 Apr.
Article En | MEDLINE | ID: mdl-19355979

The phenomenon of intra-protein communication is fundamental to such processes as allostery and signaling, yet comparatively little is understood about its physical origins despite notable progress in recent years. This review introduces contemporary but distinct frameworks for understanding intra-protein communication by presenting both the ideas behind them and a discussion of their successes and shortcomings. The first framework holds that intra-protein communication is accomplished by the sequential mechanical linkage of residues spanning a gap between distal sites. According to the second framework, proteins are best viewed as ensembles of distinct structural microstates, the dynamical and thermodynamic properties of which contribute to the experimentally observable macroscale properties. Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for studying intra-protein communication, and the insights into both frameworks it provides are presented through a discussion of numerous examples from the literature. Distinct from mechanical and thermodynamic considerations of intra-protein communication are recently applied graph and network theoretic analyses. These computational methods reduce complex three dimensional protein architectures to simple maps comprised of nodes (residues) connected by edges (inter-residue "interactions"). Analysis of these graphs yields a characterization of the protein's topology and network characteristics. These methods have shown proteins to be "small world" networks with moderately high local residue connectivities existing concurrently with a small but significant number of long range connectivities. However, experimental studies of the tantalizing idea that these putative long range interaction pathways facilitate one or several macroscopic protein characteristics are unfortunately lacking at present. This review concludes by comparing and contrasting the presented frameworks and methodologies for studying intra-protein communication and suggests a manner in which they can be brought to bear simultaneously to further enhance our understanding of this important fundamental phenomenon.


Membrane Proteins/chemistry , Models, Molecular , Protein Folding , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Thermodynamics
14.
Biochemistry ; 47(33): 8566-76, 2008 Aug 19.
Article En | MEDLINE | ID: mdl-18656953

Protein dynamics is currently an area of intense research because of its importance as complementary information to the huge quantity of available data relating protein structure and function. Because it is usually the influence of dynamics on function that is studied, the physical determinants of the distribution of flexibility in proteins have not been explored as thoroughly. In the present NMR study, an expanded suite of five (2)H relaxation experiments was used to characterize the picosecond-to-nanosecond side-chain dynamics of chymotrypsin inhibitor 2 (CI2) and five hydrophobic core mutants, some of which are members of the folding nucleus. Because CI2 is a homologue of the serine protease inhibitor eglin c, which has already been extensively characterized in terms of its dynamics, it was possible to compare not only side-chain dynamics but also the responses of these dynamics to analogous mutations. Remarkably, each of the five core mutations in CI2 led to similar and reproducible increases in side-chain flexibility throughout the entire structure. Although the expanded suite of (2)H relaxation experiments does not affect model selection for the vast majority of residues, it did enable the detection of increasing levels of nanosecond-scale motions in CI2's reactive site binding loop as the L68 side chain was progressively shortened by mutation. Collectively, we observed that the CI2 mutants are more dynamically similar to each other than to the more rigid wild-type CI2, from which we propose that wild-type CI2 has been optimized to a specific level of rigidity which may aid in its function as a serine protease inhibitor. We also observed that the pattern of side-chain dynamics of CI2 is quantitatively similar to eglin c, but that this similarity is lost upon mutating both proteins at an equivalent position. Finally, (15)N relaxation was used to characterize the backbone dynamics of wild-type and mutant CI2. Interestingly, mutation at folding nucleus positions led to widespread increases in backbone flexibility, whereas non-folding-nucleus positions led to increases in flexibility in the C-terminal half of the protein only.


Mutation , Peptides/chemistry , Peptides/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Models, Molecular , Peptides/metabolism , Plant Proteins/metabolism , Protein Conformation , Protein Folding , Proteins/chemistry , Proteins/metabolism
...