Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Proc Biol Sci ; 286(1898): 20182735, 2019 03 13.
Article En | MEDLINE | ID: mdl-30862287

Understanding the origin and maintenance of phenotypic variation, particularly across a continuous spatial distribution, represents a key challenge in evolutionary biology. For this, animal venoms represent ideal study systems: they are complex, variable, yet easily quantifiable molecular phenotypes with a clear function. Rattlesnakes display tremendous variation in their venom composition, mostly through strongly dichotomous venom strategies, which may even coexist within a single species. Here, through dense, widespread population-level sampling of the Mojave rattlesnake, Crotalus scutulatus, we show that genomic structural variation at multiple loci underlies extreme geographical variation in venom composition, which is maintained despite extensive gene flow. Unexpectedly, neither diet composition nor neutral population structure explain venom variation. Instead, venom divergence is strongly correlated with environmental conditions. Individual toxin genes correlate with distinct environmental factors, suggesting that different selective pressures can act on individual loci independently of their co-expression patterns or genomic proximity. Our results challenge common assumptions about diet composition as the key selective driver of snake venom evolution and emphasize how the interplay between genomic architecture and local-scale spatial heterogeneity in selective pressures may facilitate the retention of adaptive functional polymorphisms across a continuous space.


Biological Evolution , Crotalid Venoms/genetics , Crotalus/physiology , Genotype , Phenotype , Animals , Arizona , California , Crotalus/genetics , Diet , Environment , Gene-Environment Interaction , Population Dynamics
2.
Mol Ecol ; 13(9): 2709-20, 2004 Sep.
Article En | MEDLINE | ID: mdl-15315683

The genetic structure of populations over a wide geographical area should reflect the demographic and evolutionary processes that have shaped a species across its range. We examined the population genetic structure of antelope ground squirrels (Ammospermophilus leucurus) across the complex of North American deserts from the Great Basin of Oregon to the cape region of the Baja California peninsula. We sampled 73 individuals from 13 major localities over this 2500-km transect, from 43 to 22 degrees north. Our molecular phylogeographical analysis of 555 bp of the mitochondrial cytochrome b gene and 510 bp of the control region revealed great genetic uniformity in a single clade that extends from Oregon to central Baja California. A second distinct clade occupies the southern half of the peninsula. The minimal geographical structure of the northern clade, its low haplotype diversity and the distribution of pairwise differences between haplotypes suggest a rapid northward expansion of the population that must have followed a northward desert habitat shift associated with the most recent Quaternary climate warming and glacial retreat. The higher haplotype diversity within the southern clade and distribution of pairwise differences between haplotypes suggest that the southern clade has a longer, more stable history associated with a southern peninsular refugium. This system, as observed, reflects both historical and contemporary ecological and evolutionary responses to physical environmental gradients within genetically homogeneous populations.


Environment , Genetics, Population , Phylogeny , Sciuridae/genetics , Animals , Base Sequence , Cluster Analysis , DNA Primers , DNA, Mitochondrial/genetics , Genetic Variation , Geography , Haplotypes/genetics , Mexico , Molecular Sequence Data , Pacific States , Population Dynamics , Sequence Analysis, DNA
...