Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Vis Exp ; (207)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38767365

RESUMEN

Intermuscular adipose tissue (IMAT) is a relatively understudied adipose depot located between muscle fibers. IMAT content increases with age and BMI and is associated with metabolic and muscle degenerative diseases; however, an understanding of the biological properties of IMAT and its interplay with the surrounding muscle fibers is severely lacking. In recent years, single-cell and nuclei RNA sequencing have provided us with cell type-specific atlases of several human tissues. However, the cellular composition of human IMAT remains largely unexplored due to the inherent challenges of its accessibility from biopsy collection in humans. In addition to the limited amount of tissue collected, the processing of human IMAT is complicated due to its proximity to skeletal muscle tissue and fascia. The lipid-laden nature of the adipocytes makes it incompatible with single-cell isolation. Hence, single nuclei RNA sequencing is optimal for obtaining high-dimensional transcriptomics at single-cell resolution and provides the potential to uncover the biology of this depot, including the exact cellular composition of IMAT. Here, we present a detailed protocol for nuclei isolation and library preparation of frozen human IMAT for single nuclei RNA sequencing. This protocol allows for the profiling of thousands of nuclei using a droplet-based approach, thus providing the capacity to detect rare and low-abundant cell types.


Asunto(s)
Tejido Adiposo , Núcleo Celular , Análisis de Secuencia de ARN , Humanos , Tejido Adiposo/citología , Análisis de Secuencia de ARN/métodos , Núcleo Celular/química , Núcleo Celular/genética , Análisis de la Célula Individual/métodos , Músculo Esquelético/citología , Músculo Esquelético/química
2.
Nat Metab ; 6(5): 963-979, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693320

RESUMEN

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training (ExT) and sex on its molecular landscape is not fully established. Utilizing an integrative multi-omics approach, and leveraging data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we show profound sexual dimorphism in the scWAT of sedentary rats and in the dynamic response of this tissue to ExT. Specifically, the scWAT of sedentary females displays -omic signatures related to insulin signaling and adipogenesis, whereas the scWAT of sedentary males is enriched in terms related to aerobic metabolism. These sex-specific -omic signatures are preserved or amplified with ExT. Integration of multi-omic analyses with phenotypic measures identifies molecular hubs predicted to drive sexually distinct responses to training. Overall, this study underscores the powerful impact of sex on adipose tissue biology and provides a rich resource to investigate the scWAT response to ExT.


Asunto(s)
Tejido Adiposo Blanco , Condicionamiento Físico Animal , Caracteres Sexuales , Grasa Subcutánea , Animales , Masculino , Femenino , Ratas , Tejido Adiposo Blanco/metabolismo , Grasa Subcutánea/metabolismo , Adipogénesis , Ratas Sprague-Dawley , Multiómica
3.
Am J Physiol Cell Physiol ; 326(4): C1248-C1261, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581663

RESUMEN

Adipose-derived stem cells (ADSCs) play an important role in the differential capacity for excess energy storage between upper body abdominal (ABD) adipose tissue (AT) and lower body gluteofemoral (GF) AT. We cultured ADSCs from subcutaneous ABD AT and GF AT isolated from eight women with differential body fat distribution and performed single-cell RNA sequencing. Six populations of ADSCs were identified and segregated according to their anatomical origin. The three ADSC subpopulations in GF AT were characterized by strong cholesterol/fatty acid (FA) storage and proliferation signatures. The two ABD subpopulations, differentiated by higher expression of committed preadipocyte marker genes, were set apart by differential expression of extracellular matrix and ribosomal genes. The last population, identified in both depots, was similar to smooth muscle cells and when individually isolated and cultured in vitro they differentiated less than the other subpopulations. This work provides important insight into the use of ADSC as an in vitro model of adipogenesis and suggests that specific subpopulations of GF-ADSCs contribute to the more robust capacity for GF-AT to expand and grow compared with ABD-AT in women.NEW & NOTEWORTHY Identification of distinct subpopulations of adipose-derived stem cells (ADSCs) in upper body abdominal subcutaneous (ABD) and lower body gluteofemoral subcutaneous (GF) adipose tissue depots. In ABD-ADSCs, subpopulations are more committed to adipocyte lineage. GF-ADSC subpopulations are enriched for genes involved in lipids and cholesterol metabolism. Similar depot differences were found in stem cell population identified in freshly isolated stoma vascular fraction. The repertoire of ADSCs subpopulations was different in apple-shaped versus pear-shaped women.


Asunto(s)
Tejido Adiposo , Grasa Subcutánea , Humanos , Femenino , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Análisis de Secuencia de ARN , Colesterol/metabolismo
4.
Am J Physiol Endocrinol Metab ; 325(4): E291-E302, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584609

RESUMEN

Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous, however, this association remains controversial. The aim of this study was to perform an in-depth multifactorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active, n = 9), individuals with obesity (Obese, n = 9), and individuals with obesity, insulin resistance, and type 2 diabetes (T2D, n = 22). Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic-supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by Blue Native (BN)-PAGE and immunoblot. Tricarboxylic (TCA) cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity, supercomplex assembly, TCA cycle intermediates, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (body mass index, age, and aerobic capacity). We highlight that lean, active individuals have greater mitochondrial content, mitochondrial capacity, supercomplex assembly, and TCA cycle intermediates. These phenotypical changes are reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance. Clinical trial number: NCT01911104.NEW & NOTEWORTHY Whether impaired mitochondrial capacity contributes to skeletal muscle insulin resistance is debated. Our multifactorial analysis shows no differences in skeletal muscle mitochondrial content, mitochondrial capacity, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity). We highlight that lean, active individuals have enhanced skeletal muscle mitochondrial capacity that is also reflected at the level of DNA methylation and gene transcription.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Mitocondrias Musculares/metabolismo
5.
Res Sq ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37503028

RESUMEN

White adipose tissue (WAT) is a robust energy storage and endocrine organ critical for maintaining metabolic health as we age. Our aim was to identify cell-specific transcriptional aberrations that occur in WAT with aging. We leveraged full-length snRNA-Seq to characterize the cellular landscape of human subcutaneous WAT in a prospective cohort of 10 Younger (≤ 30 years) and 10 Older individuals (≥ 65 years) balanced for sex and body mass index (BMI). We highlight that aging WAT is associated with adipocyte hypertrophy, increased proportions of resident macrophages (M2), an upregulated innate immune response and senescence profiles in specific adipocyte populations, highlighting CXCL14 as a biomarker of this process. We also identify novel markers of pre-adipocytes and track their expression levels through pre-adipocyte differentiation. We propose that aging WAT is associated with low-grade inflammation that is managed by a foundation of innate immunity to preserve the metabolic health of the WAT.

6.
STAR Protoc ; 4(1): 102054, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853719

RESUMEN

Automated single-cell dispensing is incompatible with white adipose tissue (WAT) due to lipid-laden adipocytes. Single-nuclei RNA-Seq permits transcriptional profiling of all cells from WAT. Human WAT faces unique technical challenges in isolating nuclei compared to rodent tissue due to greater extra-cellular matrix content and larger lipid droplets. In this protocol, we detail how to isolate nuclei from frozen subcutaneous human WAT for single-nuclei RNA-Seq. For complete information on the generation and use of this protocol, please refer to Whytock et al. (2022).1.


Asunto(s)
Tejido Adiposo Blanco , Grasa Subcutánea , Humanos , Núcleo Celular/genética , Adipocitos , RNA-Seq
7.
bioRxiv ; 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36778330

RESUMEN

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training and sex on its molecular landscape has not been fully established. Utilizing an integrative multi-omics approach with data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we identified profound sexual dimorphism in the dynamic response of rat scWAT to endurance exercise training. Despite similar cardiorespiratory improvements, only male rats reduced whole-body adiposity, scWAT adipocyte size, and total scWAT triglyceride abundance with training. Multi-omic analyses of adipose tissue integrated with phenotypic measures identified sex-specific training responses including enrichment of mTOR signaling in females, while males displayed enhanced mitochondrial ribosome biogenesis and oxidative metabolism. Overall, this study reinforces our understanding that sex impacts scWAT biology and provides a rich resource to interrogate responses of scWAT to endurance training.

8.
iScience ; 25(8): 104772, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35992069

RESUMEN

White adipose tissue (WAT) is a complex mixture of adipocytes and non-adipogenic cells. Characterizing the cellular composition of WAT is critical for identifying where potential alterations occur that impact metabolism. Most single-cell (sc) RNA-Seq studies focused on the stromal vascular fraction (SVF) which does not contain adipocytes and have used technology that has a 3' or 5' bias. Using full-length sc/single-nuclei (sn) RNA-Seq technology, we interrogated the transcriptional composition of WAT using: snRNA-Seq of whole tissue, snRNA-Seq of isolated adipocytes, and scRNA-Seq of SVF. Whole WAT snRNA-Seq provided coverage of major cell types, identified three distinct adipocyte clusters, and was capable of tracking adipocyte differentiation with pseudotime. Compared to WAT, adipocyte snRNA-Seq was unable to match adipocyte heterogeneity. SVF scRNA-Seq provided greater resolution of non-adipogenic cells. These findings provide critical evidence for the utility of sc full-length transcriptomics in WAT and SVF in humans.

9.
Cells ; 11(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269469

RESUMEN

Polycystic ovary syndrome (PCOS) is often associated with metabolic syndrome features, including central obesity, suggesting that adipose tissue (AT) is a key organ in PCOS pathobiology. In this study, we compared both abdominal (ABD) and gluteofemoral (GF) subcutaneous AT in women with and without PCOS. ABD and GF subcutaneous ATs from PCOS and BMI/WHR-matched control women were analyzed by RT-qPCR, FACS and histology. ABD and GF adipose-derived stem cell (ASC) transcriptome and methylome were analyzed by RNA-seq and DNA methylation array. Similar to the control group with abdominal obesity, the GF AT of PCOS women showed lower expression of genes involved in lipid accumulation and angiogenesis compared to ABD depot. FACS analysis revealed an increase in preadipocytes number in both AT depots from PCOS. Further pathway analysis of RNA-seq comparisons demonstrated that the ASCs derived from PCOS are pro-inflammatory and exhibit a hypoxic signature in the ABD depot and have lower expression of adipogenic genes in GF depot. We also found a higher CpG methylation level in PCOS compared to control exclusively in GF-ASCs. Our data suggest that ASCs play an important role in the etiology of PCOS, potentially by limiting expansion of the healthy lower-body AT.


Asunto(s)
Síndrome del Ovario Poliquístico , Tejido Adiposo , Metilación de ADN/genética , Femenino , Humanos , Obesidad/genética , Obesidad Abdominal , Síndrome del Ovario Poliquístico/genética , Células Madre , Grasa Subcutánea
10.
J Endocr Soc ; 5(9): bvab118, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34337278

RESUMEN

CONTEXT: Glucagon is produced and released from the pancreatic alpha-cell to regulate glucose levels during periods of fasting. The main target for glucagon action is the liver, where it activates gluconeogenesis and glycogen breakdown; however, glucagon is postulated to have other roles within the body. OBJECTIVE: We sought to identify the circulating metabolites that would serve as markers of glucagon action in humans. METHODS: In this study (NCT03139305), we performed a continuous 72-hour glucagon infusion in healthy individuals with overweight/obesity. Participants were randomized to receive glucagon 12.5 ng/kg/min (GCG 12.5), glucagon 25 ng/kg/min (GCG 25), or a placebo control. A comprehensive metabolomics analysis was then performed from plasma isolated at several time points during the infusion to identify markers of glucagon activity. RESULTS: Glucagon (GCG 12.5 and GCG 25) resulted in significant changes in the plasma metabolome as soon as 4 hours following infusion. Pathways involved in amino acid metabolism were among the most affected. Rapid and sustained reduction of a broad panel of amino acids was observed. Additionally, time-dependent changes in free fatty acids and diacylglycerol and triglyceride species were observed. CONCLUSION: These results define a distinct signature of glucagon action that is broader than the known changes in glucose levels. In particular, the robust changes in amino acid levels may prove useful to monitor changes induced by glucagon in the context of additional glucagon-like peptide-1 or gastric inhibitory polypeptide treatment, as these agents also elicit changes in glucose levels.

11.
Obesity (Silver Spring) ; 29(6): 1003-1013, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34029448

RESUMEN

OBJECTIVE: The aim of this study was to determine the effects of prolonged (72 hours) glucagon administration at a low dose (LD) (12.5 ng/kg/min) and high dose (HD) (25 ng/kg/min) on energy expenditure (EE) in healthy individuals with overweight or obesity. METHODS: Thirty-one healthy participants with overweight or obesity (BMI of 27-45 kg/m2 , 26-55 years old, 23 females) were randomized into LD, HD, or placebo groups and underwent 72-hour intravenous infusion of glucagon. Whole-room calorimetry was used to assess EE and substrate use during five overnight stays (2 days at baseline, 3 days of infusion) and during two 24-hour stays (baseline vs. day 3). Blood was sampled at regular intervals throughout the inpatient stay and analyzed for glucagon and biomarkers of metabolism. RESULTS: HD infusion elevated plasma glucagon levels compared with the placebo and LD infusion (P < 0.001). Sleeping, basal, and 24-hour EE was not significantly different among groups at any time point. Those receiving HD had significantly higher basal fat oxidation (Fat Ox) at days 2 and 3 than those receiving the placebo (P < 0.05); however, no differences in 24-hour Fat Ox were observed among groups (baseline vs. day 3). CONCLUSIONS: An HD plasma glucagon infusion over 72 hours does not increase any aspects of EE in healthy individuals with overweight or obesity.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Glucagón/administración & dosificación , Obesidad/metabolismo , Sobrepeso/metabolismo , Adulto , Calorimetría , Esquema de Medicación , Femenino , Glucagón/farmacología , Humanos , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Oxidación-Reducción/efectos de los fármacos , Factores de Tiempo
12.
Am J Clin Nutr ; 114(1): 267-280, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826697

RESUMEN

BACKGROUND: Low-calorie diet (LCD)-induced weight loss demonstrates response heterogeneity. Physiologically, a decrease in energy expenditure lower than what is predicted based on body composition (metabolic adaptation) and/or an impaired capacity to increase fat oxidation may hinder weight loss. Understanding the metabolic components that characterize weight loss success is important for optimizing weight loss strategies. OBJECTIVES: We tested the hypothesis that overweight/obese individuals who had lower than expected weight loss in response to a 28-d LCD would be characterized by 1) impaired fat oxidation and 2) whole-body metabolic adaptation. We also characterized the molecular mechanisms associated with weight loss success/failure. METHODS: This was a retrospective comparison of participants who met their predicted weight loss targets [overweight/obese diet sensitive (ODS), n = 23, females = 21, males = 2] and those that did not [overweight/obese diet resistant (ODR), n = 14, females = 12, males = 2] after a 28-d LCD (900-1000 kcal/d). We used whole-body (energy expenditure and fat oxidation) and tissue-specific measurements (metabolic proteins in skeletal muscle, gene expression in adipose tissue, and metabolites in serum) to detect metabolic properties and biomarkers associated with weight loss success. RESULTS: The ODR group had greater mean ± SD metabolic adaptation (-175 ± 149 kcal/d; +119%) than the ODS group (-80 ± 108 kcal/d) after the LCD (P = 0.030). Mean ± SD fat oxidation increased similarly for both groups from baseline (0.0701 ± 0.0206 g/min) to day 28 (0.0869 ± 0.0269 g/min; P < 0.001). A principal component analysis factor comprised of serum 3-hydroxybutyric acid, citrate, leucine/isoleucine, acetyl-carnitine, and 3-hydroxylbutyrlcarnitine was associated with weight loss success at day 28 (std. ß = 0.674, R2 = 0.479, P < 0.001). CONCLUSIONS: Individuals who achieved predicted weight loss targets after a 28-d LCD were characterized by reduced metabolic adaptation. Accumulation of metabolites associated with acetyl-CoA excess and enhanced ketogenesis was identified in the ODS group.This trial was registered at clinicaltrials.gov as NCT01616082.


Asunto(s)
Adaptación Fisiológica/fisiología , Dieta Reductora , Ingestión de Energía , Metabolismo Energético/fisiología , Sobrepeso , Pérdida de Peso , Adulto , Biomarcadores , Composición Corporal , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Estudios Retrospectivos , Factores de Tiempo
13.
Eur J Nutr ; 60(3): 1605-1617, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32789769

RESUMEN

PURPOSE: High-fat, high-calorie (HFHC) diets have been used as a model to investigate lipid-induced insulin resistance. Short-term HFHC diets reduce insulin sensitivity in young healthy males, but to date, no study has directly compared males and females to elucidate sex-specific differences in the effects of a HFHC diet on functional metabolic and cardiovascular outcomes. METHODS: Eleven males (24 ± 4 years; BMI 23 ± 2 kg.m-2; V̇O2 peak 62.3 ± 8.7 ml.min-1.kg-1FFM) were matched to 10 females (25 ± 4 years; BMI 23 ± 2 kg.m-2; V̇O2 peak 58.2 ± 8.2 ml.min-1.kg-1FFM). Insulin sensitivity, measured via oral glucose tolerance test, metabolic flexibility, arterial stiffness, body composition and blood lipids and liver enzymes were measured before and after 7 days of a high-fat (65% energy) high-calorie (+ 50% kcal) diet. RESULTS: The HFHC diet did not change measures of insulin sensitivity, metabolic flexibility or arterial stiffness in either sex. There was a trend towards increased total body fat mass (kg) after the HFHC diet (+ 1.8% and + 2.3% for males and females, respectively; P = 0.056). In contrast to females, males had a significant increase in trunk to leg fat mass ratio (+ 5.1%; P = 0.005). CONCLUSION: Lean, healthy young males and females appear to be protected from the negative cardio-metabolic effects of a 7-day HFHC diet. Future research should use a prolonged positive energy balance achieved via increased energy intake and reduced energy expenditure to exacerbate negative metabolic and cardiovascular functional outcomes to determine whether sex-specific differences exist under more metabolically challenging conditions.


Asunto(s)
Enfermedades Cardiovasculares , Resistencia a la Insulina , Adulto , Composición Corporal , Enfermedades Cardiovasculares/prevención & control , Dieta Alta en Grasa/efectos adversos , Ingestión de Energía , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Adulto Joven
14.
J Clin Endocrinol Metab ; 105(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513265

RESUMEN

CONTEXT: The mechanisms responsible for dietary fat-induced insulin resistance of skeletal muscle and its microvasculature are only partially understood. OBJECTIVE: To determine the impact of high-fat overfeeding on postprandial glucose fluxes, muscle insulin signaling, and muscle microvascular endothelial nitric oxide synthase (eNOS) content and activation. DESIGN: Fifteen non-obese volunteers consumed a high-fat (64%) high-energy (+47%) diet for 7 days. Experiments were performed before and after the diet. Stable isotope tracers were used to determine glucose fluxes in response to carbohydrate plus protein ingestion. Muscle insulin signaling was determined as well as the content and activation state of muscle microvascular eNOS. RESULTS: High-fat overfeeding impaired postprandial glycemic control as demonstrated by higher concentrations of glucose (+11%; P = 0.004) and insulin (+19%; P = 0.035). Carbohydrate plus protein ingestion suppressed endogenous glucose production to a similar extent before and after the diet. Conversely, high-fat overfeeding reduced whole-body glucose clearance (-16%; P = 0.021) and peripheral insulin sensitivity (-26%; P = 0.006). This occurred despite only minor alterations in skeletal muscle insulin signaling. High-fat overfeeding reduced eNOS content in terminal arterioles (P = 0.017) and abolished the increase in eNOS Ser1177 phosphorylation that was seen after carbohydrate plus protein ingestion. CONCLUSION: High-fat overfeeding impaired whole-body glycemic control due to reduced glucose clearance, not elevated endogenous glucose production. The finding that high-fat overfeeding abolished insulin-mediated eNOS Ser1177 phosphorylation in the terminal arterioles suggests that impairments in the vasodilatory capacity of the skeletal muscle microvasculature may contribute to early dietary fat-induced impairments in glycemic control.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/patología , Resistencia a la Insulina , Músculo Esquelético/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Adulto , Biomarcadores/análisis , Glucemia/análisis , Femenino , Estudios de Seguimiento , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Fosforilación , Pronóstico , Adulto Joven
15.
J Physiol ; 596(11): 2077-2090, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29527681

RESUMEN

KEY POINTS: Hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) are the key enzymes involved in intramuscular triglyceride (IMTG) lipolysis. In isolated rat skeletal muscle, HSL translocates to IMTG-containing lipid droplets (LDs) following electrical stimulation, but whether HSL translocation occurs in human skeletal muscle during moderate-intensity exercise is currently unknown. Perilipin-2 (PLIN2) and perilipin-5 (PLIN5) proteins have been implicated in regulating IMTG lipolysis by interacting with HSL and ATGL in cell culture and rat skeletal muscle studies. This study investigated the hypothesis that HSL (but not ATGL) redistributes to LDs during moderate-intensity exercise in human skeletal muscle, and whether the localisation of these lipases with LDs was affected by the presence of PLIN proteins on the LDs. HSL preferentially redistributed to PLIN5-associated LDs whereas ATGL distribution was not altered with exercise; this is the first study to illustrate the pivotal step of HSL redistribution to PLIN5-associated LDs following moderate-intensity exercise in human skeletal muscle. ABSTRACT: Hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) control skeletal muscle lipolysis. ATGL is present on the surface of lipid droplets (LDs) containing intramuscular triglyceride (IMTG) in both the basal state and during exercise. HSL translocates to LD in ex vivo electrically stimulated rat skeletal muscle. Perilipin-2- and perilipin-5-associated lipid droplets (PLIN2+ and PLIN5+ LDs) are preferentially depleted during exercise in humans, indicating that these PLINs may control muscle lipolysis. We aimed to test the hypothesis that in human skeletal muscle in vivo HSL (but not ATGL) is redistributed to PLIN2+ and PLIN5+ LDs during moderate-intensity exercise. Muscle biopsies from 8 lean trained males (age 21 ± 1 years, BMI 22.6 ± 1.2 kg m-2 and V̇O2 peak 48.2 ± 5.0 ml min-1  kg-1 ) were obtained before and immediately following 60 min of cycling exercise at ∼59% V̇O2 peak . Cryosections were stained using antibodies targeting ATGL, HSL, PLIN2 and PLIN5. LDs were stained using BODIPY 493/503. Images were obtained using confocal immunofluorescence microscopy and object-based colocalisation analyses were performed. Following exercise, HSL colocalisation to LDs increased (P < 0.05), and was significantly greater to PLIN5+ LDs (+53%) than to PLIN5- LDs (+34%) (P < 0.05), while the increases in HSL colocalisation to PLIN2+ LDs (+16%) and PLIN2- LDs (+28%) were not significantly different. Following exercise, the fraction of LDs colocalised with ATGL (0.53 ± 0.04) did not significantly change (P < 0.05) and was not affected by PLIN association to the LDs. This study presents the first evidence of exercise-induced HSL redistribution to LDs in human skeletal muscle and identifies PLIN5 as a facilitator of this mechanism.


Asunto(s)
Ejercicio Físico , Gotas Lipídicas/metabolismo , Músculo Esquelético/metabolismo , Perilipina-2/metabolismo , Perilipina-5/metabolismo , Esterol Esterasa/metabolismo , Adulto , Humanos , Metabolismo de los Lípidos , Lipólisis , Masculino , Triglicéridos/metabolismo , Adulto Joven
16.
J Spinal Cord Med ; 36(4): 383-93, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23820154

RESUMEN

PURPOSE: To compare the criterion validity and accuracy of a 1 Hz non-differential global positioning system (GPS) and data logger device (DL) for the measurement of wheelchair tennis court movement variables. METHODS: Initial validation of the DL device was performed. GPS and DL were fitted to the wheelchair and used to record distance (m) and speed (m/second) during (a) tennis field (b) linear track, and (c) match-play test scenarios. Fifteen participants were monitored at the Wheelchair British Tennis Open. RESULTS: Data logging validation showed underestimations for distance in right (DLR) and left (DLL) logging devices at speeds >2.5 m/second. In tennis-field tests, GPS underestimated distance in five drills. DLL was lower than both (a) criterion and (b) DLR in drills moving forward. Reversing drill direction showed that DLR was lower than (a) criterion and (b) DLL. GPS values for distance and average speed for match play were significantly lower than equivalent values obtained by DL (distance: 2816 (844) vs. 3952 (1109) m, P = 0.0001; average speed: 0.7 (0.2) vs. 1.0 (0.2) m/second, P = 0.0001). Higher peak speeds were observed in DL (3.4 (0.4) vs. 3.1 (0.5) m/second, P = 0.004) during tennis match play. CONCLUSIONS: Sampling frequencies of 1 Hz are too low to accurately measure distance and speed during wheelchair tennis. GPS units with a higher sampling rate should be advocated in further studies. Modifications to existing DL devices may be required to increase measurement precision. Further research into the validity of movement devices during match play will further inform the demands and movement patterns associated with wheelchair tennis.


Asunto(s)
Procesamiento Automatizado de Datos , Sistemas de Información Geográfica , Movimiento , Posicionamiento del Paciente , Silla de Ruedas , Rendimiento Atlético/fisiología , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Tenis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...