Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Infection ; 52(4): 1425-1437, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38436913

RESUMEN

PURPOSE: To explore occupational and non-occupational risk and protective factors for the coronavirus disease 2019 (COVID-19) in healthcare workers (HCWs). METHODS: Serum specimens and questionnaire data were obtained between October 7 and December 16, 2021 from COVID-19-vaccinated HCWs at a quaternary care hospital in Munich, Germany, and were analyzed in the RisCoin Study. RESULTS: Of 3,696 participants evaluated, 6.6% have had COVID-19 at least once. Multivariate logistic regression analysis identified working in patient care occupations (7.3% had COVID-19, 95% CI 6.4-8.3, Pr = 0.0002), especially as nurses, to be a potential occupation-related COVID-19 risk factor. Non-occupational factors significantly associated with high rates of the disease were contacts to COVID-19 cases in the community (12.8% had COVID-19, 95% CI 10.3-15.8, Pr < 0.0001), being obese (9.9% had COVID-19, 95% CI 7.1-13.5, Pr = 0.0014), and frequent traveling abroad (9.4% had COVID-19, 95% CI 7.1-12.3, Pr = 0.0088). On the contrary, receiving the basic COVID-19 immunization early during the pandemic (5.9% had COVID-19, 95% CI 5.1-6.8, Pr < 0.0001), regular smoking (3.6% had COVID-19, 95% CI 2.1-6.0, Pr = 0.0088), living with the elderly (3.0% had COVID-19, 95% CI 1.0-8.0, Pr = 0.0475), and frequent consumption of ready-to-eat meals (2.6% had COVID-19, 95% CI 1.1-5.4, Pr = 0.0045) were non-occupational factors potentially protecting study participants against COVID-19. CONCLUSION: The newly discovered associations between the living situation, traveling as well as dietary habits and altered COVID-19 risk can potentially help refine containment measures and, furthermore, contribute to new mechanistic insights that may aid the protection of risk groups and vulnerable individuals.


Asunto(s)
COVID-19 , Conducta Alimentaria , Personal de Salud , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Masculino , Femenino , Personal de Salud/estadística & datos numéricos , Adulto , Persona de Mediana Edad , SARS-CoV-2/inmunología , Factores de Riesgo , Alemania/epidemiología , Viaje/estadística & datos numéricos , Encuestas y Cuestionarios
2.
iScience ; 27(2): 108839, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303712

RESUMEN

ERBB receptor tyrosine kinases are involved in development and diseases like cancer, cardiovascular, neurodevelopmental, and mental disorders. Although existing drugs target ERBB receptors, the next generation of drugs requires enhanced selectivity and understanding of physiological pathway responses to improve efficiency and reduce side effects. To address this, we developed a multilevel barcoded reporter profiling assay, termed 'ERBBprofiler', in living cells to monitor the activity of all ERBB targets and key physiological pathways simultaneously. This assay helps differentiate on-target therapeutic effects from off-target and off-pathway side effects of ERBB antagonists. To challenge the assay, eight established ERBB antagonists were profiled. Known effects were confirmed, and previously uncharacterized properties were discovered, such as pyrotinib's preference for ERBB4 over EGFR. Additionally, two lead compounds selectively targeting ERBB4 were profiled, showing promise for clinical trials. Taken together, this multiparametric profiling approach can guide early-stage drug development and lead to improved future therapeutic interventions.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38091084

RESUMEN

Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression and its increasing prevalence, there is a need to improve its diagnosis and treatment in outpatient care. Various efforts have been made to isolate individual biological markers for depression to streamline diagnostic and therapeutic approaches. However, the intricate and dynamic interplay between neuroinflammation, metabolic abnormalities, and relevant neurobiological correlates of depression is not yet fully understood. To address this issue, we propose a naturalistic prospective study involving outpatients with unipolar depression, individuals without depression or comorbidities, and healthy controls. In addition to clinical assessments, cardiovascular parameters, metabolic factors, and inflammatory parameters are collected. For analysis we will use conventional statistics as well as machine learning algorithms. We aim to detect relevant participant subgroups by data-driven cluster algorithms and their impact on the subjects' long-term prognosis. The POKAL-PSY study is a subproject of the research network POKAL (Predictors and Clinical Outcomes in Depressive Disorders; GRK 2621).

4.
Clin Exp Med ; 23(8): 4901-4917, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37659994

RESUMEN

The primary objective of the RisCoin study was to investigate the interplay of genetic, metabolic, and lifestyle factors as well as stress levels on influencing the humoral immune response after at least two COVID-19 vaccinations, primarily with mRNAs, and the risk of SARS-CoV-2 breakthrough infections during follow-up. Here, we describe the study design, procedures, and study population. RisCoin is a prospective, monocentric, longitudinal, observational cohort study. Between October and December 2021, 4515 participants with at least two COVID-19 vaccinations, primarily BNT162b2 and mRNA-1273, were enrolled at the LMU University Hospital of Munich, thereof > 4000 healthcare workers (HCW), 180 patients with inflammatory bowel disease under immunosuppression, and 119 patients with mental disorders. At enrollment, blood and saliva samples were collected to measure anti-SARS-CoV-2 antibodies, their neutralizing capacity against Omicron-BA.1, stress markers, metabolomics, and genetics. To ensure the confidential handling of sensitive data of study participants, we developed a data protection concept and a mobile application for two-way communication. The application allowed continuous data reporting, including breakthrough infections by the participants, despite irreversible anonymization. Up to 1500 participants attended follow-up visits every two to six months after enrollment. The study gathered comprehensive data and bio-samples of a large representative HCW cohort and two patient groups allowing analyses of complex interactions. Our data protection concept combined with the mobile application proves the feasibility of longitudinal assessment of anonymized participants. Our concept may serve as a blueprint for other studies handling sensitive data on HCW.


Asunto(s)
Infección Irruptiva , COVID-19 , Humanos , Vacunas contra la COVID-19 , Vacuna BNT162 , Estudios Longitudinales , Estudios Prospectivos , COVID-19/prevención & control , SARS-CoV-2 , Factores de Riesgo , Vacunación
5.
Front Psychiatry ; 13: 934640, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935431

RESUMEN

Translational research on complex, multifactorial mental health disorders, such as bipolar disorder, major depressive disorder, schizophrenia, and substance use disorders requires databases with large-scale, harmonized, and integrated real-world and research data. The Munich Mental Health Biobank (MMHB) is a mental health-specific biobank that was established in 2019 to collect, store, connect, and supply such high-quality phenotypic data and biosamples from patients and study participants, including healthy controls, recruited at the Department of Psychiatry and Psychotherapy (DPP) and the Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany. Participants are asked to complete a questionnaire that assesses sociodemographic and cross-diagnostic clinical information, provide blood samples, and grant access to their existing medical records. The generated data and biosamples are available to both academic and industry researchers. In this manuscript, we outline the workflow and infrastructure of the MMHB, describe the clinical characteristics and representativeness of the sample collected so far, and reveal future plans for expansion and application. As of 31 October 2021, the MMHB contains a continuously growing set of data from 578 patients and 104 healthy controls (46.37% women; median age, 38.31 years). The five most common mental health diagnoses in the MMHB are recurrent depressive disorder (38.78%; ICD-10: F33), alcohol-related disorders (19.88%; ICD-10: F10), schizophrenia (19.69%; ICD-10: F20), depressive episode (15.94%; ICD-10: F32), and personality disorders (13.78%; ICD-10: F60). Compared with the average patient treated at the recruiting hospitals, MMHB participants have significantly more mental health-related contacts, less severe symptoms, and a higher level of functioning. The distribution of diagnoses is also markedly different in MMHB participants compared with individuals who did not participate in the biobank. After establishing the necessary infrastructure and initiating recruitment, the major tasks for the next phase of the MMHB project are to improve the pace of participant enrollment, diversify the sociodemographic and diagnostic characteristics of the sample, and improve the utilization of real-world data generated in routine clinical practice.

6.
Cell Mol Life Sci ; 76(19): 3915, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31377842

RESUMEN

The article Monitoring activities of receptor tyrosine kinases using a universal adapter in genetically encoded split TEV assays, written by Jan P. Wintgens, Sven P. Wichert, Luksa Popovic, Moritz J. Rossner and Michael C. Wehr, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 8 January 2019 without open access.

7.
Cell Mol Life Sci ; 76(6): 1185-1199, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30623207

RESUMEN

Receptor tyrosine kinases (RTKs) play key roles in various aspects of cell biology, including cell-to-cell communication, proliferation and differentiation, survival, and tissue homeostasis, and have been implicated in various diseases including cancer and neurodevelopmental disorders. Ligand-activated RTKs recruit adapter proteins through a phosphotyrosine (p-Tyr) motif that is present on the RTK and a p-Tyr-binding domain, like the Src homology 2 (SH2) domain found in adapter proteins. Notably, numerous combinations of RTK/adapter combinations exist, making it challenging to compare receptor activities in standardised assays. In cell-based assays, a regulated adapter recruitment can be investigated using genetically encoded protein-protein interaction detection methods, such as the split TEV biosensor assay. Here, we applied the split TEV technique to robustly monitor the dynamic recruitment of both naturally occurring full-length adapters and artificial adapters, which are formed of clustered SH2 domains. The applicability of this approach was tested for RTKs from various subfamilies including the epidermal growth factor (ERBB) family, the insulin receptor (INSR) family, and the hepatocyte growth factor receptor (HGFR) family. Best signal-to-noise ratios of ligand-activated RTK receptor activation was obtained when clustered SH2 domains derived from GRB2 were used as adapters. The sensitivity and robustness of the RTK recruitment assays were validated in dose-dependent inhibition assays using the ERBB family-selective antagonists lapatinib and WZ4002. The RTK split TEV recruitment assays also qualify for high-throughput screening approaches, suggesting that the artificial adapter may be used as universal adapter in cell-based profiling assays within pharmacological intervention studies.


Asunto(s)
Bioensayo/métodos , Proteína Adaptadora GRB2/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Dominios Homologos src , Células A549 , Acrilamidas/metabolismo , Acrilamidas/farmacología , Animales , Línea Celular Tumoral , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteína Adaptadora GRB2/genética , Humanos , Lapatinib/metabolismo , Lapatinib/farmacología , Células PC12 , Unión Proteica/efectos de los fármacos , Pirimidinas/metabolismo , Pirimidinas/farmacología , Ratas , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Reproducibilidad de los Resultados
8.
Sci Rep ; 8(1): 17597, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514868

RESUMEN

Neuronal signal transduction shapes brain function and malfunction may cause mental disorders. Despite the existence of functional genomics screens for proliferation and toxicity, neuronal signalling has been difficult to address so far. To overcome this limitation, we developed a pooled screening assay which combines barcoded activity reporters with pooled genetic perturbation in a dual-expression adeno-associated virus (AAV) library. With this approach, termed pathScreener, we comprehensively dissect signalling pathways in postmitotic neurons. This overcomes several limitations of lentiviral-based screens. By applying first a barcoded and multiplexed reporter assay, termed cisProfiler, we identified the synaptic-activity responsive element (SARE) as top performance sensor of neuronal activity. Next, we targeted more than 4,400 genes and screened for modulatory effects on SARE activity in primary cortical neurons. We identified with high replicability many known genes involved in glutamatergic synapse-to-nucleus signalling of which a subset was validated in orthogonal assays. Several others have not yet been associated with the regulation of neuronal activity such as the hedgehog signalling members Ptch2 and Ift57. This assay thus enhances the toolbox for analysing regulatory processes during neuronal signalling and may help identifying novel targets for brain disorders.


Asunto(s)
Dependovirus/genética , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Transducción de Señal/genética , Sinapsis , Animales , Genes Reporteros , Genómica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Sinapsis/genética , Sinapsis/metabolismo
9.
Sci Rep ; 8(1): 8137, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802268

RESUMEN

G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors and are implicated in the physiological regulation of many biological processes. The high diversity of GPCRs and their physiological functions make them primary targets for therapeutic drugs. For the generation of novel compounds, however, selectivity towards a given target is a critical issue in drug development as structural similarities between members of GPCR subfamilies exist. Therefore, the activities of multiple GPCRs that are both closely and distantly related to assess compound selectivity need to be tested simultaneously. Here, we present a cell-based multiplexed GPCR activity assay, termed GPCRprofiler, which uses a ß-arrestin recruitment strategy and combines split TEV protein-protein interaction and EXT-based barcode technologies. This approach enables simultaneous measurements of receptor activities of multiple GPCR-ligand combinations by applying massively parallelized reporter assays. In proof-of-principle experiments covering 19 different GPCRs, both the specificity of endogenous agonists and the polypharmacological effects of two known antipsychotics on GPCR activities were demonstrated. Technically, normalization of barcode reporters across individual assays allows quantitative pharmacological assays in a parallelized manner. In summary, the GPCRprofiler technique constitutes a flexible and scalable approach, which enables simultaneous profiling of compound actions on multiple receptor activities in living cells.


Asunto(s)
Bioensayo/métodos , Receptores Acoplados a Proteínas G/metabolismo , Animales , Antipsicóticos/farmacología , Línea Celular Tumoral , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos
10.
EMBO Mol Med ; 9(10): 1448-1462, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28743784

RESUMEN

Enhanced NRG1-ERBB4 signaling is a risk pathway in schizophrenia, and corresponding mouse models display several endophenotypes of the disease. Nonetheless, pathway-directed treatment strategies with clinically applicable compounds have not been identified. Here, we applied a cell-based assay using the split TEV technology to screen a library of clinically applicable compounds to identify modulators of NRG1-ERBB4 signaling for repurposing. We recovered spironolactone, known as antagonist of corticosteroids, as an inhibitor of the ERBB4 receptor and tested it in pharmacological and biochemical assays to assess secondary compound actions. Transgenic mice overexpressing Nrg1 type III display cortical Erbb4 hyperphosphorylation, a condition observed in postmortem brains from schizophrenia patients. Spironolactone treatment reverted hyperphosphorylation of activated Erbb4 in these mice. In behavioral tests, spironolactone treatment of Nrg1 type III transgenic mice ameliorated schizophrenia-relevant behavioral endophenotypes, such as reduced sensorimotor gating, hyperactivity, and impaired working memory. Moreover, spironolactone increases spontaneous inhibitory postsynaptic currents in cortical slices supporting an ERBB4-mediated mode-of-action. Our findings suggest that spironolactone, a clinically safe drug, provides an opportunity for new treatment options for schizophrenia.


Asunto(s)
Antagonistas de Receptores de Mineralocorticoides/farmacología , Neurregulina-1/antagonistas & inhibidores , Receptor ErbB-4/antagonistas & inhibidores , Esquizofrenia/tratamiento farmacológico , Espironolactona/farmacología , Animales , Escala de Evaluación de la Conducta , Línea Celular Tumoral , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Fosforilación/efectos de los fármacos , Espironolactona/uso terapéutico
11.
Nat Neurosci ; 20(1): 10-15, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27775720

RESUMEN

The molecular trigger of CNS myelination is unknown. By targeting Pten in cerebellar granule cells and activating the AKT1-mTOR pathway, we increased the caliber of normally unmyelinated axons and the expression of numerous genes encoding regulatory proteins. This led to the expansion of genetically wild-type oligodendrocyte progenitor cells, oligodendrocyte differentiation and de novo myelination of parallel fibers. Thus, a neuronal program dependent on the phosphoinositide PI(3,4,5)P3 is sufficient to trigger all steps of myelination.


Asunto(s)
Axones/metabolismo , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Oligodendroglía/citología , Fosfatidilinositoles/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Ratones Transgénicos
12.
Schizophr Bull ; 42 Suppl 1: S22-33, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26714764

RESUMEN

Chronic psychosocial stress is an important environmental risk factor of psychiatric diseases such as schizophrenia. Social defeat in rodents has been shown to be associated with maladaptive cellular and behavioral consequences including cognitive impairments. Although gene expression changes upon psychosocial stress have been described, a comprehensive transcriptome profiling study at the global level in precisely defined hippocampal subregions which are associated with learning has been lacking. In this study, we exposed adult C57Bl/6N mice for 3 weeks to "resident-intruder" paradigm and combined laser capture microdissection with microarray analyses to identify transcriptomic signatures of chronic psychosocial stress in dentate gyrus and CA3 subregion of the dorsal hippocampus. At the individual transcript level, we detected subregion specific stress responses whereas gene set enrichment analyses (GSEA) identified several common pathways upregulated upon chronic psychosocial stress related to proteasomal function and energy supply. Behavioral profiling revealed stress-associated impairments most prominent in fear memory formation which was prevented by chronic lithium treatment. Thus, we again microdissected the CA3 region and performed global transcriptome analysis to search for molecular signatures altered by lithium treatment in stressed animals. By combining GSEA with unsupervised clustering, we detected pathways that are regulated by stress and lithium in the CA3 region of the hippocampus including proteasomal components, oxidative phosphorylation, and anti-oxidative mechanisms. Our study thus provides insight into hidden molecular phenotypes of chronic psychosocial stress and lithium treatment and proves a beneficial role for lithium treatment as an agent attenuating negative effects of psychosocial stress on cognition.


Asunto(s)
Antimaníacos/farmacología , Región CA3 Hipocampal/metabolismo , Cognición/efectos de los fármacos , Disfunción Cognitiva/prevención & control , Giro Dentado/metabolismo , Perfilación de la Expresión Génica/métodos , Expresión Génica/efectos de los fármacos , Compuestos de Litio/farmacología , Estrés Psicológico/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Región CA3 Hipocampal/efectos de los fármacos , Disfunción Cognitiva/etiología , Condicionamiento Psicológico/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Modelos Animales de Enfermedad , Miedo/efectos de los fármacos , Captura por Microdisección con Láser , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Estrés Psicológico/complicaciones , Regulación hacia Arriba
13.
PLoS One ; 10(10): e0138852, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26426258

RESUMEN

Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS). Histopathological and radiological analysis revealed that neurodegeneration occurs early in the disease course. However, the pathological mechanisms involved in neurodegeneration are poorly understood. Myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in Brown Norway rats (BN-rats) is a well-established animal model, especially of the neurodegenerative aspects of MS. Previous studies in this animal model indicated that loss of retinal ganglion cells (RGCs), the neurons that form the axons of the optic nerve, occurs in the preclinical phase of the disease and is in part independent of overt histopathological changes of the optic nerve. Therefore, the aim of this study was to identify genes which are involved in neuronal cell loss at different disease stages of EAE. Furthermore, genes that are highly specific for autoimmune-driven neurodegeneration were compared to those regulated in RGCs after optic nerve axotomy at corresponding time points. Using laser capture micro dissection we isolated RNA from unfixed RGCs and performed global transcriptome analysis of retinal neurons. In total, we detected 582 genes sequentially expressed in the preclinical phase and 1150 genes in the clinical manifest EAE (P < 0.05, fold-induction >1.5). Furthermore, using ingenuity pathway analysis (IPA), we identified amyloid precursor protein (APP) as a potential upstream regulator of changes in gene expression in the preclinical EAE but neither in clinical EAE, nor at any time point after optic nerve transection. Therefore, the gene pathway analysis lead to the hypothesis that altered cleavage of APP in neurons in the preclinical phase of EAE leads to the enhanced production of APP intracellular domain (AICD), which in turn acts as a transcriptional regulator and thereby initiates an apoptotic signaling cascade via up-regulation of the target gene p53.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Encefalomielitis Autoinmune Experimental/complicaciones , Neuritis Óptica/genética , Neuritis Óptica/metabolismo , Proteolisis , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba , Animales , Apoptosis , Femenino , Análisis de Secuencia por Matrices de Oligonucleótidos , Nervio Óptico/metabolismo , Nervio Óptico/patología , Neuritis Óptica/complicaciones , Neuritis Óptica/patología , Ratas , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Transducción de Señal
14.
Brain Struct Funct ; 220(1): 193-203, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24129767

RESUMEN

Sulforhodamine 101 (SR101) is widely used for astrocyte identification, though the labeling mechanism remains unknown and the efficacy of labeling in different brain regions is heterogeneous. By combining region-specific isolation of astrocytes followed by transcriptome analysis, two-photon excitation microscopy, and mouse genetics, we identified the thyroid hormone transporter OATP1C1 as the SR101-uptake transporter in hippocampus and cortex.


Asunto(s)
Astrocitos/metabolismo , Colorantes , Hipocampo/citología , Proteínas de Transporte de Catión Orgánico/metabolismo , Rodaminas , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Biología Computacional , Electrólitos/líquido cefalorraquídeo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Transgénicos , Optogenética , Proteínas de Transporte de Catión Orgánico/genética
15.
PLoS One ; 9(10): e110310, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25340473

RESUMEN

Increasing evidence suggests that clock genes may be implicated in a spectrum of psychiatric diseases, including sleep and mood related disorders as well as schizophrenia. The bHLH transcription factors SHARP1/DEC2/BHLHE41 and SHARP2/DEC1/BHLHE40 are modulators of the circadian system and SHARP1/DEC2/BHLHE40 has been shown to regulate homeostatic sleep drive in humans. In this study, we characterized Sharp1 and Sharp2 double mutant mice (S1/2-/-) using online EEG recordings in living animals, behavioral assays and global gene expression profiling. EEG recordings revealed attenuated sleep/wake amplitudes and alterations of theta oscillations. Increased sleep in the dark phase is paralleled by reduced voluntary activity and cortical gene expression signatures reveal associations with psychiatric diseases. S1/2-/- mice display alterations in novelty induced activity, anxiety and curiosity. Moreover, mutant mice exhibit impaired working memory and deficits in prepulse inhibition resembling symptoms of psychiatric diseases. Network modeling indicates a connection between neural plasticity and clock genes, particularly for SHARP1 and PER1. Our findings support the hypothesis that abnormal sleep and certain (endo)phenotypes of psychiatric diseases may be caused by common mechanisms involving components of the molecular clock including SHARP1 and SHARP2.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Ritmo Circadiano/fisiología , Endofenotipos/metabolismo , Trastornos Mentales/fisiopatología , Proteínas Represoras/deficiencia , Sueño/fisiología , Factores de Transcripción/deficiencia , Animales , Ansiedad/complicaciones , Ansiedad/fisiopatología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ritmo Circadiano/efectos de los fármacos , Clozapina/farmacología , Clozapina/uso terapéutico , Conducta Exploratoria/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Masculino , Trastornos Mentales/complicaciones , Ratones Endogámicos C57BL , Inhibición Prepulso/efectos de los fármacos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Sueño/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vigilia/efectos de los fármacos , Vigilia/genética
16.
Am J Hum Genet ; 94(4): 533-46, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24680886

RESUMEN

Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disease, characterized by ataxia, intellectual disability, epilepsy, and premature death. In the majority of cases, PMD is caused by duplication of PLP1 that is expressed in myelinating oligodendrocytes. Despite detailed knowledge of PLP1, there is presently no curative therapy for PMD. We used a Plp1 transgenic PMD mouse model to test the therapeutic effect of Lonaprisan, an antagonist of the nuclear progesterone receptor, in lowering Plp1 mRNA overexpression. We applied placebo-controlled Lonaprisan therapy to PMD mice for 10 weeks and performed the grid slip analysis to assess the clinical phenotype. Additionally, mRNA expression and protein accumulation as well as histological analysis of the central nervous system were performed. Although Plp1 mRNA levels are increased 1.8-fold in PMD mice compared to wild-type controls, daily Lonaprisan treatment reduced overexpression at the RNA level to about 1.5-fold, which was sufficient to significantly improve the poor motor phenotype. Electron microscopy confirmed a 25% increase in the number of myelinated axons in the corticospinal tract when compared to untreated PMD mice. Microarray analysis revealed the upregulation of proapoptotic genes in PMD mice that could be partially rescued by Lonaprisan treatment, which also reduced microgliosis, astrogliosis, and lymphocyte infiltration.


Asunto(s)
Estrenos/uso terapéutico , Antagonistas de Hormonas/uso terapéutico , Enfermedad de Pelizaeus-Merzbacher/tratamiento farmacológico , Progesterona/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Estrenos/farmacocinética , Estrenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Antagonistas de Hormonas/farmacocinética , Antagonistas de Hormonas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Proteolipídica de la Mielina/genética , Fenotipo , ARN Mensajero/genética
17.
EMBO J ; 33(2): 157-70, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24413018

RESUMEN

For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non-synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high-resolution biochemical analyses of specific synapse subpopulations. Employing knock-in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high-resolution biochemical analyses of specific synapse subpopulations in health and disease.


Asunto(s)
Encéfalo/citología , Citometría de Flujo/métodos , Ácido Glutámico/metabolismo , Neuronas/citología , Sinaptosomas/fisiología , Animales , Encéfalo/metabolismo , Separación Celular/métodos , Canales Iónicos/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Proteómica , Sinapsis/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
18.
Sci Signal ; 5(215): ra21, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22416276

RESUMEN

Ligand binding to the epidermal growth factor receptor (EGFR) on the cell surface activates the extracellular signal-regulated kinase (ERK) cascade. Activated, ligand-bound receptors are internalized, and this process may contribute to termination of signaling or enable signaling from intracellular sites. ESCRT (endosomal sorting complex required for transport) complexes may contribute to termination of signaling by sorting receptors into intraluminal vesicles of multivesicular endosomes from which the receptors continue into lysosomes for degradation. We showed that depletion of ESCRTs, which causes the retention of the EGFR in endosomes, increased the activation of the EGFR and its downstream kinases but had little effect on the overall profile and amplitude of the EGF-induced transcriptional response. In contrast, interfering with receptor endocytosis or ubiquitination to keep the EGFR at the cell surface stimulated increases in the abundance of many EGF-induced transcripts, similar to those induced by EGFR overexpression. We also found that the complete EGF transcriptional program was rapidly activated after ligand binding to the receptor. We conclude that the transcriptional response is elicited primarily by receptor molecules at the cell surface.


Asunto(s)
Endocitosis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/genética , Endosomas/metabolismo , Factor de Crecimiento Epidérmico/genética , Receptores ErbB/genética , Células HeLa , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Proteolisis
19.
Eur Arch Psychiatry Clin Neurosci ; 262(7): 565-77, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22441714

RESUMEN

Inaccurate wiring and synaptic pathology appear to be major hallmarks of schizophrenia. A variety of gene products involved in synaptic neurotransmission and receptor signaling are differentially expressed in brains of schizophrenia patients. However, synaptic pathology may also develop by improper expression of intra- and extra-cellular structural elements weakening synaptic stability. Therefore, we have investigated transcription of these elements in the left superior temporal gyrus of 10 schizophrenia patients and 10 healthy controls by genome-wide microarrays (Illumina). Fourteen up-regulated and 22 downregulated genes encoding structural elements were chosen from the lists of differentially regulated genes for further qRT-PCR analysis. Almost all genes confirmed by this method were downregulated. Their gene products belonged to vesicle-associated proteins, that is, synaptotagmin 6 and syntaxin 12, to cytoskeletal proteins, like myosin 6, pleckstrin, or to proteins of the extracellular matrix, such as collagens, or laminin C3. Our results underline the pivotal roles of structural genes that control formation and stabilization of pre- and post-synaptic elements or influence axon guidance in schizophrenia. The glial origin of collagen or laminin highlights the close interrelationship between neurons and glial cells in establishment and maintenance of synaptic strength and plasticity. It is hypothesized that abnormal expression of these and related genes has a major impact on the pathophysiology of schizophrenia.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Sinapsis/metabolismo , Lóbulo Temporal/patología , Adulto , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Estudios de Casos y Controles , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Componente Principal , Sinapsis/genética
20.
Cell Mol Life Sci ; 69(17): 2879-94, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22441408

RESUMEN

Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.


Asunto(s)
Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Vaina de Mielina/metabolismo , Animales , Comunicación Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA