Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ Comput Sci ; 8: e1080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532802

RESUMEN

We hide grayscale secret images into a grayscale cover image, which is considered to be a challenging steganography problem. Our goal is to develop a steganography scheme with enhanced embedding capacity while preserving the visual quality of the stego-image as well as the extracted secret image, and ensuring that the stego-image is resistant to steganographic attacks. The novel embedding rule of our scheme helps to hide secret image sparse coefficients into the oversampled cover image sparse coefficients in a staggered manner. The stego-image is constructed by using the Alternating Direction Method of Multipliers (ADMM) to solve the Least Absolute Shrinkage and Selection Operator (LASSO) formulation of the underlying minimization problem. Finally, the secret images are extracted from the constructed stego-image using the reverse of our embedding rule. Using these components together, to achieve the above mentioned competing goals, forms our most novel contribution. We term our scheme SABMIS (Sparse Approximation Blind Multi-Image Steganography). We perform extensive experiments on several standard images. By choosing the size of the length and the width of the secret images to be half of the length and the width of cover image, respectively, we obtain embedding capacities of 2 bpp (bits per pixel), 4 bpp, 6 bpp, and 8 bpp while embedding one, two, three, and four secret images, respectively. Our focus is on hiding multiple secret images. For the case of hiding two and three secret images, our embedding capacities are higher than all the embedding capacities obtained in the literature until now (3 times and 6 times than the existing best, respectively). For the case of hiding four secret images, although our capacity is slightly lower than one work (about 2/3rd), we do better on the other two goals (quality of stego-image & extracted secret image as well as resistance to steganographic attacks). For our experiments, there is very little deterioration in the quality of the stego-images as compared to their corresponding cover images. Like all other competing works, this is supported visually as well as over 30 dB of Peak Signal-to-Noise Ratio (PSNR) values. The good quality of the stego-images is further validated by multiple numerical measures. None of the existing works perform this exhaustive validation. When using SABMIS, the quality of the extracted secret images is almost same as that of the corresponding original secret images. This aspect is also not demonstrated in all competing literature. SABMIS further improves the security of the inherently steganographic attack resistant transform based schemes. Thus, it is one of the most secure schemes among the existing ones. Additionally, we demonstrate that SABMIS executes in few minutes, and show its application on the real-life problems of securely transmitting medical images over the internet.

2.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36015967

RESUMEN

In this work, a method for automatic hyper-parameter tuning of the stacked asymmetric auto-encoder is proposed. In previous work, the deep learning ability to extract personality perception from speech was shown, but hyper-parameter tuning was attained by trial-and-error, which is time-consuming and requires machine learning knowledge. Therefore, obtaining hyper-parameter values is challenging and places limits on deep learning usage. To address this challenge, researchers have applied optimization methods. Although there were successes, the search space is very large due to the large number of deep learning hyper-parameters, which increases the probability of getting stuck in local optima. Researchers have also focused on improving global optimization methods. In this regard, we suggest a novel global optimization method based on the cultural algorithm, multi-island and the concept of parallelism to search this large space smartly. At first, we evaluated our method on three well-known optimization benchmarks and compared the results with recently published papers. Results indicate that the convergence of the proposed method speeds up due to the ability to escape from local optima, and the precision of the results improves dramatically. Afterward, we applied our method to optimize five hyper-parameters of an asymmetric auto-encoder for automatic personality perception. Since inappropriate hyper-parameters lead the network to over-fitting and under-fitting, we used a novel cost function to prevent over-fitting and under-fitting. As observed, the unweighted average recall (accuracy) was improved by 6.52% (9.54%) compared to our previous work and had remarkable outcomes compared to other published personality perception works.


Asunto(s)
Algoritmos , Aprendizaje Automático , Percepción , Personalidad , Probabilidad
4.
Comput Mech ; 66(4): 827-849, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33029034

RESUMEN

In this work, we propose a parameter estimation framework for fracture propagation problems. The fracture problem is described by a phase-field method. Parameter estimation is realized with a Bayesian approach. Here, the focus is on uncertainties arising in the solid material parameters and the critical energy release rate. A reference value (obtained on a sufficiently refined mesh) as the replacement of measurement data will be chosen, and their posterior distribution is obtained. Due to time- and mesh dependencies of the problem, the computational costs can be high. Using Bayesian inversion, we solve the problem on a relatively coarse mesh and fit the parameters. In several numerical examples our proposed framework is substantiated and the obtained load-displacement curves, that are usually the target functions, are matched with the reference values.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...