Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
J Immunother Cancer ; 12(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38754917

BACKGROUND: Cancer neoantigens arise from protein-altering somatic mutations in tumor and rank among the most promising next-generation immuno-oncology agents when used in combination with immune checkpoint inhibitors. We previously developed a computational framework, REAL-neo, for identification, quality control, and prioritization of both class-I and class-II human leucocyte antigen (HLA)-presented neoantigens resulting from somatic single-nucleotide mutations, small insertions and deletions, and gene fusions. In this study, we developed a new module, SPLICE-neo, to identify neoantigens from aberrant RNA transcripts from two distinct sources: (1) DNA mutations within splice sites and (2) de novo RNA aberrant splicings. METHODS: First, SPLICE-neo was used to profile all DNA splice-site mutations in 11,892 tumors from The Cancer Genome Atlas (TCGA) and identified 11 profiles of splicing donor or acceptor site gains or losses. Transcript isoforms resulting from the top seven most frequent profiles were computed using novel logic models. Second, SPLICE-neo identified de novo RNA splicing events using RNA sequencing reads mapped to novel exon junctions from either single, double, or multiple exon-skipping events. The aberrant transcripts from both sources were then ranked based on isoform expression levels and z-scores assuming that individual aberrant splicing events are rare. Finally, top-ranked novel isoforms were translated into protein, and the resulting neoepitopes were evaluated for neoantigen potential using REAL-neo. The top splicing neoantigen candidates binding to HLA-A*02:01 were validated using in vitro T2 binding assays. RESULTS: We identified abundant splicing neoantigens in four representative TCGA cancers: BRCA, LUAD, LUSC, and LIHC. In addition to their substantial contribution to neoantigen load, several splicing neoantigens were potent tumor antigens with stronger bindings to HLA compared with the positive control of antigens from influenza virus. CONCLUSIONS: SPLICE-neo is the first tool to comprehensively identify and prioritize splicing neoantigens from both DNA splice-site mutations and de novo RNA aberrant splicings. There are two major advances of SPLICE-neo. First, we developed novel logic models that assemble and prioritize full-length aberrant transcripts from DNA splice-site mutations. Second, SPLICE-neo can identify exon-skipping events involving more than two exons, which account for a quarter to one-third of all skipping events.


Antigens, Neoplasm , Neoplasms , RNA Splicing , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Neoplasms/immunology , Neoplasms/genetics
2.
JAMA Neurol ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38619853

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.

3.
Mol Cancer Ther ; 23(6): 823-835, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38442920

Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive malignancy with poor outcomes. To investigate novel therapeutic strategies, we characterized three new metastatic prostate cancer patient derived-tumor xenograft (PDTX) models and developed 3D spheroids from each to investigate molecular targeted therapy combinations including CDK4/6 inhibitors (CDK4/6i) with AKT inhibitors (ATKi). Metastatic prostate cancer tissue was collected and three PDTX models were established and characterized using whole-exome sequencing. PDTX 3D spheroids were developed from these three PDTXs to show resistance patterns and test novel molecular-targeted therapies. CDK4/6i's were combined with AKTi's to assess synergistic antitumor response to prove our hypothesis that blockade of AKT overcomes drug resistance to CDK4/6i. This combination was evaluated in PDTX three-dimensional (3D) spheroids and in vivo experiments with responses measured by tumor volumes, PSA, and Ga-68 PSMA-11 PET-CT imaging. We demonstrated CDK4/6i's with AKTi's possess synergistic antitumor activity in three mCRPC PDTX models. These models have multiple unique pathogenic and deleterious genomic alterations with resistance to single-agent CDK4/6i's. Despite this, combination therapy with AKTi's was able to overcome resistance mechanisms. The IHC and Western blot analysis confirmed on target effects, whereas tumor volume, serum PSA ELISA, and radionuclide imaging demonstrated response to therapy with statistically significant SUV differences seen with Ga-68 PSMA-11 PET-CT. These preclinical data demonstrating antitumor synergy by overcoming single-agent CDK 4/6i as well as AKTi drug resistance provide the rational for a clinical trial combining a CDK4/6i with an AKTi in patients with mCRPC whose tumor expresses wild-type retinoblastoma 1.


Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Prostatic Neoplasms, Castration-Resistant , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt , Xenograft Model Antitumor Assays , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Male , Animals , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Mice , Proto-Oncogene Proteins c-akt/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Neoplasm Metastasis , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
4.
J Exp Bot ; 74(17): 5153-5165, 2023 09 13.
Article En | MEDLINE | ID: mdl-37551820

Height is a critical component of plant architecture, significantly affecting crop yield. The genetic basis of this trait in soybean remains unclear. In this study, we report the characterization of the Compact mutant of soybean, which has short internodes. The candidate gene was mapped to chromosome 17, and the interval containing the causative mutation was further delineated using biparental mapping. Whole-genome sequencing of the mutant revealed an 8.7 kb deletion in the promoter of the Glyma.17g145200 gene, which encodes a member of the class III gibberellin (GA) 2-oxidases. The mutation has a dominant effect, likely via increased expression of the GA 2-oxidase transcript observed in green tissue, as a result of the deletion in the promoter of Glyma.17g145200. We further demonstrate that levels of GA precursors are altered in the Compact mutant, supporting a role in GA metabolism, and that the mutant phenotype can be rescued with exogenous GA3. We also determined that overexpression of Glyma.17g145200 in Arabidopsis results in dwarfed plants. Thus, gain of promoter activity in the Compact mutant leads to a short internode phenotype in soybean through altered metabolism of gibberellin precursors. These results provide an example of how structural variation can control an important crop trait and a role for Glyma.17g145200 in soybean architecture, with potential implications for increasing crop yield.


Gibberellins , Glycine max , Glycine max/genetics , Glycine max/metabolism , Gibberellins/metabolism , Mutation , Phenotype
5.
Medicine (Baltimore) ; 102(24): e34017, 2023 Jun 16.
Article En | MEDLINE | ID: mdl-37327267

We previously demonstrated that increased expression of the SERPINA5 gene is associated with hippocampal vulnerability in Alzheimer's disease (AD) brains. SERPINA5 was further demonstrated to be a novel tau-binding partner that colocalizes within neurofibrillary tangles. Our goal was to determine whether genetic variants in the SERPINA5 gene contributed to clinicopathologic phenotypes in AD. To screen for SERPINA5 variants, we sequenced 103 autopsy-confirmed young-onset AD cases with a positive family history of cognitive decline. To further assess the frequency of a rare missense variant, SERPINA5 p.E228Q, we screened an additional 1114 neuropathologically diagnosed AD cases. To provide neuropathologic context in AD, we immunohistochemically evaluated SERPINA5 and tau in a SERPINA5 p.E228Q variant carrier and a matched noncarrier. In the initial SERPINA5 screen, we observed 1 individual with a rare missense variant (rs140138746) that resulted in an amino acid change (p.E228Q). In our AD validation cohort, we identified an additional 5 carriers of this variant, resulting in an allelic frequency of 0.0021. There was no significant difference between SERPINA5 p.E228Q carriers and noncarriers in terms of demographic or clinicopathologic characteristics. Although not significant, on average SERPINA5 p.E228Q carriers were 5 years younger at age of disease onset than noncarriers (median: 66 [60-73] vs 71 [63-77] years, P = .351). In addition, SERPINA5 p.E228Q carriers exhibited a longer disease duration than noncarriers that approached significance (median: 12 [10-15]) vs 9 [6-12] years, P = .079). More severe neuronal loss was observed in the locus coeruleus, hippocampus, and amygdala of the SERPINA5 p.E228Q carrier compared to noncarrier, although no significant difference in SERPINA5-immunopositive lesions was observed. Throughout the AD brain in either carrier or noncarrier, areas with early pretangle pathology or burnt-out ghost tangle accumulation did not reveal SERPINA5-immunopositive neurons. Mature tangles and newly formed ghost tangles appeared to correspond well with SERPINA5-immunopositive tangle-bearing neurons. SERPINA5 gene expression was previously associated with disease phenotype; however, our findings suggest that SERPINA5 genetic variants may not be a contributing factor to clinicopathologic differences in AD. SERPINA5-immunopositive neurons appear to undergo a pathologic process that corresponded with specific levels of tangle maturity.


Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Cross-Sectional Studies , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Brain/pathology , Hippocampus/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Protein C Inhibitor/metabolism
7.
J Natl Cancer Inst ; 114(8): 1192-1199, 2022 08 08.
Article En | MEDLINE | ID: mdl-35299252

BACKGROUND: In the United States, cancer disproportionately impacts Black and African American individuals. Identifying genetic factors underlying cancer disparities has been an important research focus and requires data that are equitable in both quantity and quality across racial groups. It is widely recognized that DNA databases quantitatively underrepresent minorities. However, the differences in data quality between racial groups have not been well studied. METHODS: We compared the qualities of germline and tumor exomes between ancestrally African and European patients in The Cancer Genome Atlas of 7 cancers with at least 50 self-reported Black patients in the context of sequencing depth, tumor purity, and qualities of germline variants and somatic mutations. RESULTS: Germline and tumor exomes from ancestrally African patients were sequenced at statistically significantly lower depth in 6 out of the 7 cancers. For 3 cancers, most ancestrally European exomes were sequenced in early sample batches at higher depth, whereas ancestrally African exomes were concentrated in later batches and sequenced at much lower depth. For the other 3 cancers, the reasons of lower sequencing coverage of ancestrally African exomes remain unknown. Furthermore, even when the sequencing depths were comparable, African exomes had disproportionally higher percentages of positions with insufficient coverage, likely because of the known European bias in the human reference genome that impacted exome capture kit design. CONCLUSIONS: Overall and positional lower sequencing depths of ancestrally African exomes in The Cancer Genome Atlas led to underdetection and lower quality of variants, highlighting the need to consider epidemiological factors for future genomics studies.


Exome , Neoplasms , Exome/genetics , Genome, Human , Genomics , Humans , Neoplasms/genetics , United States/epidemiology , Exome Sequencing
8.
PLoS One ; 16(4): e0249305, 2021.
Article En | MEDLINE | ID: mdl-33861770

Genetic studies have shifted to sequencing-based rare variants discovery after decades of success in identifying common disease variants by Genome-Wide Association Studies using Single Nucleotide Polymorphism chips. Sequencing-based studies require large sample sizes for statistical power and therefore often inadvertently introduce batch effects because samples are typically collected, processed, and sequenced at multiple centers. Conventionally, batch effects are first detected and visualized using Principal Components Analysis and then controlled by including batch covariates in the disease association models. For sequencing-based genetic studies, because all variants included in the association analyses have passed sequencing-related quality control measures, this conventional approach treats every variant as equal and ignores the substantial differences still remaining in variant qualities and characteristics such as genotype quality scores, alternative allele fractions (fraction of reads supporting alternative allele at a variant position) and sequencing depths. In the Alzheimer's Disease Sequencing Project (ADSP) exome dataset of 9,904 cases and controls, we discovered hidden variant-level differences between sample batches of three sequencing centers and two exome capture kits. Although sequencing centers were included as a covariate in our association models, we observed differences at the variant level in genotype quality and alternative allele fraction between samples processed by different exome capture kits that significantly impacted both the confidence of variant detection and the identification of disease-associated variants. Furthermore, we found that a subset of top disease-risk variants came exclusively from samples processed by one exome capture kit that was more effective at capturing the alternative alleles compared to the other kit. Our findings highlight the importance of additional variant-level quality control for large sequencing-based genetic studies. More importantly, we demonstrate that automatically filtering out variants with batch differences may lead to false negatives if the batch discordances come largely from quality differences and if the batch-specific variants have better quality.


Genome-Wide Association Study , High-Throughput Nucleotide Sequencing/methods , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoproteins E/genetics , Databases, Genetic , Exome , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Male , Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Polymorphism, Single Nucleotide , Principal Component Analysis , Sequence Analysis, DNA
9.
Cancer Prev Res (Phila) ; 13(11): 901-910, 2020 11.
Article En | MEDLINE | ID: mdl-32753376

The etiology of triple-negative breast cancers (TNBC) is poorly understood. As many TNBCs develop prior to the initiation of breast cancer screening or at younger ages when the sensitivity of mammography is comparatively low, understanding the etiology of TNBCs is critical for discovering novel prevention approaches for these tumors. Furthermore, the higher incidence rate of estrogen receptor-negative breast cancers, and specifically, of TNBCs, among young African American women (AAW) versus white women is a source of racial disparities in breast cancer mortality. Whereas immune responses to TNBCs have received considerable attention in relation to prognosis and treatment, the concept that dysregulated immune responses may predispose to the development of TNBCs has received limited attention. We present evidence that dysregulated immune responses are critical in the pathogenesis of TNBCs, based on the molecular biology of the cancers and the mechanisms proposed to mediate TNBC risk factors. Furthermore, proposed risk factors for TNBC, especially childbearing without breastfeeding, high parity, and obesity, are more prevalent among AAW than white women. Limited data suggest genetic differences in immune responses by race, which favor a stronger Thr type 2 (Th2) immune response among AAW than white women. Th2 responses contribute to wound-healing processes, which are implicated in the pathogenesis of TNBCs. Accordingly, we review data on the link between immune responses and TNBC risk and consider whether the prevalence of risk factors that result in dysregulated immunity is higher among AAW than white women.


Black or African American/statistics & numerical data , Immunity/immunology , Triple Negative Breast Neoplasms/pathology , White People/statistics & numerical data , Female , Humans , Triple Negative Breast Neoplasms/etiology
10.
Oncoimmunology ; 9(1): 1744947, 2020.
Article En | MEDLINE | ID: mdl-32523802

Tumors acquire numerous mutations during development and progression. When translated into proteins, these mutations give rise to neoantigens that can be recognized by T cells and generate antibodies, representing an exciting direction of cancer immunotherapy. While neoantigens have been reported in many cancer types, the profiling of neoantigens often focused on the class-I subtype that are presented to CD8 + T cells, and the relationship between neoantigen load and clinical outcomes was often inconsistent among cancer types. In this study, we described an informatics workflow, REAL-neo, for identification, quality control (QC), and prioritization of both class-I and class-II human leukocyte antigen (HLA) bound neoantigens that arise from somatic single nucleotide mutations (SNM), small insertions and deletions (INDEL), and gene fusions. We applied REAL-neo to 835 primary breast tumors in the Cancer Genome Atlas (TCGA) and performed comprehensive profiling and characterization of the detected neoantigens. We found recurrent HLA class-I and class-II restricted neoantigens across breast cancer cases, and uncovered associations between neoantigen load and clinical traits. Both class-I and class-II neoantigen loads from SNM and INDEL were found to predict overall survival independent of tumor mutational burden (TMB), breast cancer subtypes, tumor-infiltrating lymphocyte (TIL) levels, tumor stage, and age at diagnosis. Our study highlighted the importance of accurate and comprehensive neoantigen profiling and QC, and is the first to report the predictive value of neoantigen load for overall survival in breast cancer.


Antigens, Neoplasm , Breast Neoplasms , Antigens, Neoplasm/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Female , Histocompatibility Antigens Class I , Histocompatibility Antigens Class II , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Survival Rate
11.
Phytopathology ; 110(4): 907-915, 2020 Apr.
Article En | MEDLINE | ID: mdl-31821112

Sudden death syndrome (SDS) foliar symptoms consist of foliar chlorosis, foliar necrosis, leaf marginal curling, and premature defoliation, but resistance screening has been evaluated mostly based on the overall SDS foliar severity rather than on a specific foliar symptom. This study generated an F2 population derived from crossing the susceptible variety Sloan and the resistant germplasm line PI 243518, which exhibits resistance to both foliar chlorosis and necrosis. A total of 400 F2 lines were evaluated for foliar chlorosis, foliar necrosis, and overall SDS foliar symptoms, separately. Genotyping-by-sequencing was applied to obtain single nucleotide polymorphisms (SNPs) in the F2 population, and linkage mapping using 135 F2 lines with 969 high-quality SNPs identified a locus on chromosome 13 for foliar necrosis and SDS foliar symptoms. The locus partially overlaps with loci previously reported for SDS on chromosome 13, which is the third time the region from 15.98 to 21.00 Mbp has been reproduced independently and therefore qualifies this locus for a new nomenclature proposed as Rfv13-02. In summary, this study generated a new biparental population that enables not only the discovery of a locus for foliar necrosis and SDS foliar symptoms on chromosome 13 but also the potential for advanced exploration of SDS foliar resistance derived from the germplasm line PI 243518.


Fusarium , Glycine max , Chromosome Mapping , Death, Sudden , Disease Resistance , Humans , Plant Diseases , Polymorphism, Single Nucleotide
12.
BMC Bioinformatics ; 18(1): 586, 2017 12 28.
Article En | MEDLINE | ID: mdl-29281959

BACKGROUND: Genotyping-by-sequencing (GBS), a method to identify genetic variants and quickly genotype samples, reduces genome complexity by using restriction enzymes to divide the genome into fragments whose ends are sequenced on short-read sequencing platforms. While cost-effective, this method produces extensive missing data and requires complex bioinformatics analysis. GBS is most commonly used on crop plant genomes, and because crop plants have highly variable ploidy and repeat content, the performance of GBS analysis software can vary by target organism. Here we focus our analysis on soybean, a polyploid crop with a highly duplicated genome, relatively little public GBS data and few dedicated tools. RESULTS: We compared the performance of five GBS pipelines using low-coverage Illumina sequence data from three soybean populations. To address issues identified with existing methods, we developed GB-eaSy, a GBS bioinformatics workflow that incorporates widely used genomics tools, parallelization and automation to increase the accuracy and accessibility of GBS data analysis. Compared to other GBS pipelines, GB-eaSy rapidly and accurately identified the greatest number of SNPs, with SNP calls closely concordant with whole-genome sequencing of selected lines. Across all five GBS analysis platforms, SNP calls showed unexpectedly low convergence but generally high accuracy, indicating that the workflows arrived at largely complementary sets of valid SNP calls on the low-coverage data analyzed. CONCLUSIONS: We show that GB-eaSy is approximately as good as, or better than, other leading software solutions in the accuracy, yield and missing data fraction of variant calling, as tested on low-coverage genomic data from soybean. It also performs well relative to other solutions in terms of the run time and disk space required. In addition, GB-eaSy is built from existing open-source, modular software packages that are regularly updated and commonly used, making it straightforward to install and maintain. While GB-eaSy outperformed other individual methods on the datasets analyzed, our findings suggest that a comprehensive approach integrating the results from multiple GBS bioinformatics pipelines may be the optimal strategy to obtain the largest, most highly accurate SNP yield possible from low-coverage polyploid sequence data.


Crops, Agricultural/genetics , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Software , Workflow , Genome, Plant , Genotype , Polymorphism, Single Nucleotide/genetics , Polyploidy , Glycine max/genetics , Whole Genome Sequencing
13.
BMC Genomics ; 18(1): 849, 2017 Nov 07.
Article En | MEDLINE | ID: mdl-29115920

BACKGROUND: Sclerotinia Stem Rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is ubiquitous in cooler climates where soybean crops are grown. Breeding for resistance to SSR remains challenging in crops like soybean, where no single gene provides strong resistance, but instead, multiple genes work together to provide partial resistance. In this study, a genome-wide association study (GWAS) was performed to dissect the complex genetic architecture of soybean quantitative resistance to SSR and to provide effective molecular markers that could be used in breeding programs. A collection of 420 soybean genotypes were selected based on either reports of resistance, or from one of three different breeding programs in Brazil, two commercial, one public. Plant genotype sensitivity to SSR was evaluated by the cut stem inoculation method, and lesion lengths were measured at 4 days post inoculation. RESULTS: Genotyping-by-sequencing was conducted to genotype the 420 soybean lines. The TASSEL 5 GBSv2 pipeline was used to call SNPs under optimized parameters, and with the extra step of trimming adapter sequences. After filtering missing data, heterozygosity, and minor allele frequency, a total of 11,811 SNPs and 275 soybean genotypes were obtained for association analyses. Using a threshold of FDR-adjusted p-values <0.1, the Compressed Mixed Linear Model (CMLM) with Genome Association and Prediction Integrated Tool (GAPIT), and the Fixed and Random Model Circulating Probability Unification (FarmCPU) methods, both approaches identified SNPs with significant association to disease response on chromosomes 1, 11, and 18. The CMLM also found significance on chromosome 19, whereas FarmCPU also identified significance on chromosomes 4, 9, and 16. CONCLUSIONS: These similar and yet different results show that the computational methods used can impact SNP associations in soybean, a plant with a high degree of linkage disequilibrium, and in SSR resistance, a trait that has a complex genetic basis. A total of 125 genes were located within linkage disequilibrium of the three loci shared between the two models. Their annotations and gene expressions in previous studies of soybean infected with S. sclerotiorum were examined to narrow down the candidates.


Ascomycota/physiology , Disease Resistance/genetics , Genome-Wide Association Study , Genotype , Glycine max/genetics , Glycine max/microbiology , Plant Diseases/microbiology , Brazil , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Glycine max/immunology
14.
Mol Plant ; 8(7): 983-97, 2015 Jul.
Article En | MEDLINE | ID: mdl-25598141

In plant development, the flowering transition and inflorescence architecture are modulated by two homologous proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). The florigen FT promotes the transition to reproductive development and flowering, while TFL1 represses this transition. Despite their importance to plant adaptation and crop improvement and their extensive study by the plant community, the molecular mechanisms controlling the opposing actions of FT and TFL1 have remained mysterious. Recent studies in multiple species have unveiled diverse roles of the FT/TFL1 gene family in developmental processes other than flowering regulation. In addition, the striking evolution of FT homologs into flowering repressors has occurred independently in several species during the evolution of flowering plants. These reports indicate that the FT/TFL1 gene family is a major target of evolution in nature. Here, we comprehensively survey the conserved and diverse functions of the FT/TFL1 gene family throughout the plant kingdom, summarize new findings regarding the unique evolution of FT in multiple species, and highlight recent work elucidating the molecular mechanisms of these proteins.


Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Evolution, Molecular , Amino Acid Sequence , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Conserved Sequence , Flowers/growth & development
...