Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(45): e2314781120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903258

RESUMEN

Recognition that common human amyloidoses are prion diseases makes the use of the Saccharomyces cerevisiae prion model systems to screen for possible anti-prion components of increasing importance. [PSI+] and [URE3] are amyloid-based prions of Sup35p and Ure2p, respectively. Yeast has at least six anti-prion systems that together cure nearly all [PSI+] and [URE3] prions arising in their absence. We made a GAL-promoted bank of 14,913 human open reading frames in a yeast shuttle plasmid and isolated 20 genes whose expression cures [PSI+] or [URE3]. PRPF19 is an E3 ubiquitin ligase that cures [URE3] if its U-box is intact. DNAJA1 is a J protein that cures [PSI+] unless its interaction with Hsp70s is defective. Human Bag5 efficiently cures [URE3] and [PSI+]. Bag family proteins share a 110 to 130 residue "BAG domain"; Bag 1, 2, 3, 4, and 6 each have one BAG domain while Bag5 has five BAG domains. Two BAG domains are necessary for curing [PSI+], but one can suffice to cure [URE3]. Although most Bag proteins affect autophagy in mammalian cells, mutations blocking autophagy in yeast do not affect Bag5 curing of [PSI+] or [URE3]. Curing by Bag proteins depends on their interaction with Hsp70s, impairing their role, with Hsp104 and Sis1, in the amyloid filament cleavage necessary for prion propagation. Since Bag5 curing is reduced by overproduction of Sis1, we propose that Bag5 cures prions by blocking Sis1 access to Hsp70s in its role with Hsp104 in filament cleavage.


Asunto(s)
Priones , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Priones/genética , Priones/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mutación , Amiloide/genética , Amiloide/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Proteínas Fúngicas/metabolismo , Mamíferos/metabolismo , Factores de Empalme de ARN/genética , Proteínas Nucleares/metabolismo , Enzimas Reparadoras del ADN/genética
4.
Biology (Basel) ; 11(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36138748

RESUMEN

All variants of the yeast prions [PSI+] and [URE3] are detrimental to their hosts, as shown by the dramatic slowing of growth (or even lethality) of a majority, by the rare occurrence in wild isolates of even the mildest variants and by the absence of reproducible benefits of these prions. To deal with the prion problem, the host has evolved an array of anti-prion systems, acting in normal cells (without overproduction or deficiency of any component) to block prion transmission from other cells, to lower the rates of spontaneous prion generation, to cure most prions as they arise and to limit the damage caused by those variants that manage to elude these (necessarily) imperfect defenses. Here we review the properties of prion protein sequence polymorphisms Btn2, Cur1, Hsp104, Upf1,2,3, ribosome-associated chaperones, inositol polyphosphates, Sis1 and Lug1, which are responsible for these anti-prion effects. We recently showed that the combined action of ribosome-associated chaperones, nonsense-mediated decay factors and the Hsp104 disaggregase lower the frequency of [PSI+] appearance as much as 5000-fold. Moreover, while Btn2 and Cur1 are anti-prion factors against [URE3] and an unrelated artificial prion, they promote [PSI+] prion generation and propagation.

5.
Viruses ; 14(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36146752

RESUMEN

Prions are infectious proteins, mostly having a self-propagating amyloid (filamentous protein polymer) structure consisting of an abnormal form of a normally soluble protein. These prions arise spontaneously in the cell without known reason, and their effects were generally considered to be fatal based on prion diseases in humans or mammals. However, the wide array of prion studies in yeast including filamentous fungi revealed that their effects can range widely, from lethal to very mild (even cryptic) or functional, depending on the nature of the prion protein and the specific prion variant (or strain) made by the same prion protein but with a different conformation. This prion biology is affected by an array of molecular chaperone systems, such as Hsp40, Hsp70, Hsp104, and combinations of them. In parallel with the systems required for prion propagation, yeast has multiple anti-prion systems, constantly working in the normal cell without overproduction of or a deficiency in any protein, which have negative effects on prions by blocking their formation, curing many prions after they arise, preventing prion infections, and reducing the cytotoxicity produced by prions. From the protectors of nascent polypeptides (Ssb1/2p, Zuo1p, and Ssz1p) to the protein sequesterase (Btn2p), the disaggregator (Hsp104), and the mysterious Cur1p, normal levels of each can cure the prion variants arising in its absence. The controllers of mRNA quality, nonsense-mediated mRNA decay proteins (Upf1, 2, 3), can cure newly formed prion variants by association with a prion-forming protein. The regulator of the inositol pyrophosphate metabolic pathway (Siw14p) cures certain prion variants by lowering the levels of certain organic compounds. Some of these proteins have other cellular functions (e.g., Btn2), while others produce an anti-prion effect through their primary role in the normal cell (e.g., ribosomal chaperones). Thus, these anti-prion actions are the innate defense strategy against prions. Here, we outline the anti-prion systems in yeast that produce innate immunity to prions by a multi-layered operation targeting each step of prion development.


Asunto(s)
Priones , Proteínas de Saccharomyces cerevisiae , Difosfatos/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Inositol/metabolismo , Chaperonas Moleculares/metabolismo , Polímeros/metabolismo , Proteínas Priónicas/metabolismo , Priones/química , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(28): e2205500119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787049

RESUMEN

[PSI+] and [URE3] are prions of Saccharomyces cerevisiae based on amyloids of Sup35p and Ure2p, respectively. In normal cells, antiprion systems block prion formation, cure many prions that arise, prevent infection by prions, and prevent toxicity of those prions that escape the other systems. The upf1Δ, ssz1Δ, and hsp104T160M single mutants each develop [PSI+] at 10- to 15-fold, but the triple mutant spontaneously generates [PSI+] at up to ∼5,000-fold the wild-type rate. Most such [PSI+] variants are cured by restoration of any one of the three defective antiprion systems, defining a previously unknown type of [PSI+] variant and proving that these three antiprion systems act independently. Generation of [PSI+] variants stable in wild-type cells is also increased in upf1Δ ssz1Δ hsp104T160M strains 25- to 500-fold. Btn2 and Cur1 each cure 90% of [URE3] prions generated in their absence, but we find that btn2Δ or cur1Δ diminishes the frequency of [PSI+] generation in an otherwise wild-type strain. Most [PSI+] isolates in a wild-type strain are destabilized on transfer to a btn2Δ or cur1Δ host. Single upf1Δ or hsp104T160M mutants show the effects of btn2Δ or cur1Δ but not upf1Δ ssz1Δ hsp104T160M or ssz1Δ hsp104T160M strains. The disparate action of Btn2 on [URE3] and [PSI+] may be a result of [PSI+]'s generally higher seed number and lower amyloid structural stability compared with [URE3]. Thus, prion generation is not a rare event, but the escape of a nascent prion from the surveillance by the antiprion systems is indeed rare.


Asunto(s)
Amiloidosis , Priones , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas Amiloidogénicas , Proteínas de Choque Térmico/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Curr Genet ; 67(6): 833-847, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34319422

RESUMEN

The yeast prions (infectious proteins) [URE3] and [PSI+] are essentially non-functional (or even toxic) amyloid forms of Ure2p and Sup35p, whose normal function is in nitrogen catabolite repression and translation termination, respectively. Yeast has an array of systems working in normal cells that largely block infection with prions, block most prion formation, cure most nascent prions and mitigate the toxic effects of those prions that escape the first three types of systems. Here we review recent progress in defining these anti-prion systems, how they work and how they are regulated. Polymorphisms of the prion domains partially block infection with prions. Ribosome-associated chaperones ensure proper folding of nascent proteins, thus reducing [PSI+] prion formation and curing many [PSI+] variants that do form. Btn2p is a sequestering protein which gathers [URE3] amyloid filaments to one place in the cells so that the prion is often lost by progeny cells. Proteasome impairment produces massive overexpression of Btn2p and paralog Cur1p, resulting in [URE3] curing. Inversely, increased proteasome activity, by derepression of proteasome component gene transcription or by 60S ribosomal subunit gene mutation, prevents prion curing by Btn2p or Cur1p. The nonsense-mediated decay proteins (Upf1,2,3) cure many nascent [PSI+] variants by associating with Sup35p directly. Normal levels of the disaggregating chaperone Hsp104 can also cure many [PSI+] prion variants. By keeping the cellular levels of certain inositol polyphosphates / pyrophosphates low, Siw14p cures certain [PSI+] variants. It is hoped that exploration of the yeast innate immunity to prions will lead to discovery of similar systems in humans.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Enfermedades por Prión/etiología , Priones/inmunología , Amiloide/química , Amiloide/inmunología , Amiloide/metabolismo , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/inmunología , Proteínas Amiloidogénicas/metabolismo , Animales , Autofagia , Susceptibilidad a Enfermedades/inmunología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Interacciones Huésped-Patógeno/genética , Humanos , Chaperonas Moleculares/metabolismo , Mutación , Degradación de ARNm Mediada por Codón sin Sentido , Enfermedades por Prión/metabolismo , Priones/química , Priones/genética , Priones/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Ribosomas/metabolismo
8.
Genetics ; 217(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857305

RESUMEN

[URE3] is an amyloid-based prion of Ure2p, a negative regulator of poor nitrogen source catabolism in Saccharomyces cerevisiae. Overproduced Btn2p or its paralog Cur1p, in processes requiring Hsp42, cure the [URE3] prion. Btn2p cures by collecting Ure2p amyloid filaments at one place in the cell. We find that rpl4aΔ, rpl21aΔ, rpl21bΔ, rpl11bΔ, and rpl16bΔ (large ribosomal subunit proteins) or ubr2Δ (ubiquitin ligase targeting Rpn4p, an activator of proteasome genes) reduce curing by overproduced Btn2p or Cur1p. Impaired curing in ubr2Δ or rpl21bΔ is restored by an rpn4Δ mutation. No effect of rps14aΔ or rps30bΔ on curing was observed, indicating that 60S subunit deficiency specifically impairs curing. Levels of Hsp42p, Sis1p, or Btn3p are unchanged in rpl4aΔ, rpl21bΔ, or ubr2Δ mutants. Overproduction of Cur1p or Btn2p was enhanced in rpn4Δ and hsp42Δ mutants, lower in ubr2Δ strains, and restored to above wild-type levels in rpn4Δ ubr2Δ strains. As in the wild-type, Ure2N-GFP colocalizes with Btn2-RFP in rpl4aΔ, rpl21bΔ, or ubr2Δ strains, but not in hsp42Δ. Btn2p/Cur1p overproduction cures [URE3] variants with low seed number, but seed number is not increased in rpl4aΔ, rpl21bΔ or ubr2Δ mutants. Knockouts of genes required for the protein sorting function of Btn2p did not affect curing of [URE3], nor did inactivation of the Hsp104 prion-curing activity. Overactivity of the ubiquitin/proteasome system, resulting from 60S subunit deficiency or ubr2Δ, may impair Cur1p and Btn2p curing of [URE3] by degrading Cur1p, Btn2p or another component of these curing systems.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Glutatión Peroxidasa/metabolismo , Chaperonas Moleculares/metabolismo , Priones/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Glutatión Peroxidasa/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Inmunidad Innata , Chaperonas Moleculares/genética , Priones/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ribosómicas/deficiencia , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
9.
Genetics ; 218(1)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33742650

RESUMEN

[URE3] is a prion of the nitrogen catabolism controller, Ure2p, and [PSI+] is a prion of the translation termination factor Sup35p in S. cerevisiae. Btn2p cures [URE3] by sequestration of Ure2p amyloid filaments. Cur1p, paralogous to Btn2p, also cures [URE3], but by a different (unknown) mechanism. We find that an array of mutations impairing proteasome assembly or MG132 inhibition of proteasome activity result in loss of [URE3]. In proportion to their prion-curing effects, each mutation affecting proteasomes elevates the cellular concentration of the anti-prion proteins Btn2 and Cur1. Of >4,600 proteins detected by SILAC, Btn2p was easily the most overexpressed in a pre9Δ (α3 core subunit) strain. Indeed, deletion of BTN2 and CUR1 prevents the prion-curing effects of proteasome impairment. Surprisingly, the 15 most unstable yeast proteins are not increased in pre9Δ cells suggesting altered proteasome specificity rather than simple inactivation. Hsp42, a chaperone that cooperates with Btn2 and Cur1 in curing [URE3], is also necessary for the curing produced by proteasome defects, although Hsp42p levels are not substantially altered by a proteasome defect. We find that pre9Δ and proteasome chaperone mutants that most efficiently lose [URE3], do not destabilize [PSI+] or alter cellular levels of Sup35p. A tof2 mutation or deletion likewise destabilizes [URE3], and elevates Btn2p, suggesting that Tof2p deficiency inactivates proteasomes. We suggest that when proteasomes are saturated with denatured/misfolded proteins, their reduced degradation of Btn2p and Cur1p automatically upregulates these aggregate-handling systems to assist in the clean-up.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Glutatión Peroxidasa/metabolismo , Chaperonas Moleculares/metabolismo , Priones/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amiloide/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Glutatión Peroxidasa/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Proteínas Priónicas/metabolismo , Priones/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Proc Natl Acad Sci U S A ; 117(42): 26298-26306, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020283

RESUMEN

The yeast prion [PSI+] is a self-propagating amyloid of the translation termination factor, Sup35p. For known pathogenic prions, such as [PSI+], a single protein can form an array of different amyloid structures (prion variants) each stably inherited and with differing biological properties. The ribosome-associated chaperones, Ssb1/2p (Hsp70s), and RAC (Zuo1p (Hsp40) and Ssz1p (Hsp70)), enhance de novo protein folding by protecting nascent polypeptide chains from misfolding and maintain translational fidelity by involvement in translation termination. Ssb1/2p and RAC chaperones were previously found to inhibit [PSI+] prion generation. We find that most [PSI+] variants arising in the absence of each chaperone were cured by restoring normal levels of that protein. [PSI+] variants hypersensitive to Ssb1/2p have distinguishable biological properties from those hypersensitive to Zuo1p or Ssz1p. The elevated [PSI+] generation frequency in each deletion strain is not due to an altered [PIN+], another prion that primes [PSI+] generation. [PSI+] prion generation/propagation may be inhibited by Ssb1/2/RAC chaperones by ensuring proper folding of nascent Sup35p, thus preventing its joining amyloid fibers. Alternatively, the effect of RAC/Ssb mutations on translation termination and the absence of an effect on the [URE3] prion suggest an effect on the mature Sup35p such that it does not readily join amyloid filaments. Ssz1p is degraded in zuo1Δ [psi-] cells, but not if the cells carry any of several [PSI+] variants. Our results imply that prions arise more frequently than had been thought but the cell has evolved exquisite antiprion systems that rapidly eliminate most variants.


Asunto(s)
Chaperonas Moleculares/metabolismo , Factores de Terminación de Péptidos/genética , Priones/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32635197

RESUMEN

Infectious proteins (prions) include an array of human (mammalian) and yeast amyloid diseases in which a protein or peptide forms a linear ß-sheet-rich filament, at least one functional amyloid prion, and two functional infectious proteins unrelated to amyloid. In Saccharomyces cerevisiae, at least eight anti-prion systems deal with pathogenic amyloid yeast prions by (1) blocking their generation (Ssb1,2, Ssz1, Zuo1), (2) curing most variants as they arise (Btn2, Cur1, Hsp104, Upf1,2,3, Siw14), and (3) limiting the pathogenicity of variants that do arise and propagate (Sis1, Lug1). Known mechanisms include facilitating proper folding of the prion protein (Ssb1,2, Ssz1, Zuo1), producing highly asymmetric segregation of prion filaments in mitosis (Btn2, Hsp104), competing with the amyloid filaments for prion protein monomers (Upf1,2,3), and regulation of levels of inositol polyphosphates (Siw14). It is hoped that the discovery of yeast anti-prion systems and elucidation of their mechanisms will facilitate finding analogous or homologous systems in humans, whose manipulation may be useful in treatment.


Asunto(s)
Priones/genética , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Animales , Evolución Molecular , Genes Fúngicos , Variación Genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Priones/antagonistas & inhibidores , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química
12.
Viruses ; 11(3)2019 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-30857327

RESUMEN

The known amyloid-based prions of Saccharomyces cerevisiae each have multiple heritable forms, called "prion variants" or "prion strains". These variants, all based on the same prion protein sequence, differ in their biological properties and their detailed amyloid structures, although each of the few examined to date have an in-register parallel folded ß sheet architecture. Here, we review the range of biological properties of yeast prion variants, factors affecting their generation and propagation, the interaction of prion variants with each other, the mutability of prions, and their segregation during mitotic growth. After early differentiation between strong and weak stable and unstable variants, the parameters distinguishing the variants has dramatically increased, only occasionally correlating with the strong/weak paradigm. A sensitivity to inter- and intraspecies barriers, anti-prion systems, and chaperone deficiencies or excesses and other factors all have dramatic selective effects on prion variants. Recent studies of anti-prion systems, which cure prions in wild strains, have revealed an enormous array of new variants, normally eliminated as they arise and so not previously studied. This work suggests that defects in the anti-prion systems, analogous to immune deficiencies, may be at the root of some human amyloidoses.


Asunto(s)
Variación Genética , Chaperonas Moleculares , Priones/genética , Priones/patogenicidad , Saccharomyces cerevisiae/genética , Amiloide/química , Amiloide/genética , Mutación , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/genética
13.
J Biol Chem ; 294(5): 1729-1738, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30710020

RESUMEN

Yeast prions have become important models for the study of the basic mechanisms underlying human amyloid diseases. Yeast prions are pathogenic (unlike the [Het-s] prion of Podospora anserina), and most are amyloid-based with the same in-register parallel ß-sheet architecture as most of the disease-causing human amyloids studied. Normal yeast cells eliminate the large majority of prion variants arising, and several anti-prion/anti-amyloid systems that eliminate them have been identified. It is likely that mammalian cells also have anti-amyloid systems, which may be useful in the same way humoral, cellular, and innate immune systems are used to treat or prevent bacterial and viral infections.


Asunto(s)
Priones/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos
14.
FEMS Yeast Res ; 19(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30329039

RESUMEN

I retrace my path from math to medicine to biochemistry to yeast genetics, my focus on infectious diseases of yeast and finally prions. My discovery of yeast prions relied on my particular focus on the logical relations of non-chromosomal genetic elements and the chromosomal genes involved in their propagation and expression. Pursuing an understanding of yeast prions involved structural biology based on genetics, solid-state NMR, population genetics and more genetics.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Priones/química , Priones/metabolismo , Pliegue de Proteína , Levaduras/genética , Levaduras/metabolismo , Genética Microbiana/tendencias , Historia del Siglo XX , Historia del Siglo XXI , Biología Molecular/tendencias
15.
Methods Mol Biol ; 1779: 313-339, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29886541

RESUMEN

We detail some of the genetic, biochemical, and physical methods useful in studying amyloids in yeast, particularly the yeast prions. These methods include cytoduction (cytoplasmic mixing), infection of cells with prion amyloids, use of green fluorescent protein fusions with amyloid-forming proteins for cytology, protein purification and amyloid formation, and electron microscopy of filaments.


Asunto(s)
Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Electrónica de Transmisión , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Genetics ; 209(3): 789-800, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29769283

RESUMEN

[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism. While most "variants" of the [URE3] prion are toxic, mild variants that only slightly slow growth are more widely studied. The existence of several antiprion systems suggests that some components may be protecting cells from potential detrimental effects of mild [URE3] variants. Our extensive Hermes transposon mutagenesis showed that disruption of YLR352W dramatically slows the growth of [URE3-1] strains. Ylr352wp is an F-box protein, directing selection of substrates for ubiquitination by a "cullin"-containing E3 ligase. For efficient ubiquitylation, cullin-dependent E3 ubiquitin ligases must be NEDDylated, modified by a ubiquitin-related peptide called NEDD8 (Rub1p in yeast). Indeed, we find that disruption of NEDDylation-related genes RUB1, ULA1, UBA3, and UBC12 is also counterselected in our screen. We find that like ylr352wΔ [URE3] strains, ylr352wΔ ure2Δ strains do not grow on nonfermentable carbon sources. Overexpression of Hap4p, a transcription factor stimulating expression of mitochondrial proteins, or mutation of GLN1, encoding glutamine synthetase, allows growth of ylr352w∆ [URE3] strains on glycerol media. Supplying proline as a nitrogen source shuts off the nitrogen catabolite repression (NCR) function of Ure2p, but does not slow growth of ylr352wΔ strains, suggesting a distinct function of Ure2p in carbon catabolism. Also, gln1 mutations impair NCR, but actually relieve the growth defect of ylr352wΔ [URE3] and ylr352wΔ ure2Δ strains, again showing that loss of NCR is not producing the growth defect and suggesting that Ure2p has another function. YLR352W largely protects cells from the deleterious effects of otherwise mild [URE3] variants or of a ure2 mutation (the latter a rarer event), and we name it LUG1 (lets [URE3]/ure2 grow).


Asunto(s)
Carbono/metabolismo , Proteínas de Drosophila/genética , Glutatión Peroxidasa/metabolismo , Nitrógeno/metabolismo , Priones/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Elementos Transponibles de ADN , Proteínas F-Box/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Glutatión Peroxidasa/genética , Mutación , Priones/genética , Receptor Cross-Talk , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
17.
J Mol Biol ; 430(20): 3707-3719, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29698650

RESUMEN

Saccharomyces cerevisiae is an occasional host to an array of prions, most based on self-propagating, self-templating amyloid filaments of a normally soluble protein. [URE3] is a prion of Ure2p, a regulator of nitrogen catabolism, while [PSI+] is a prion of Sup35p, a subunit of the translation termination factor Sup35p. In contrast to the functional prions, [Het-s] of Podospora anserina and [BETA] of yeast, the amyloid-based yeast prions are rare in wild strains, arise sporadically, have an array of prion variants for a single prion protein sequence, have a folded in-register parallel ß-sheet amyloid architecture, are detrimental to their hosts, arouse a stress response in the host, and are subject to curing by various host anti-prion systems. These characteristics allow a logical basis for distinction between functional amyloids/prions and prion diseases. These infectious yeast amyloidoses are outstanding models for the many common human amyloid-based diseases that are increasingly found to have some infectious characteristics.


Asunto(s)
Amiloide/metabolismo , Proteínas Fúngicas/metabolismo , Priones/metabolismo , Amiloide/química , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Evolución Biológica , Proteínas Fúngicas/química , Humanos , Priones/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
18.
Biochemistry ; 57(8): 1285-1292, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29377675

RESUMEN

The amyloid-based yeast prions are folded in-register parallel ß-sheet polymers. Each prion can exist in a wide array of variants, with different biological properties resulting from different self-propagating amyloid conformations. Yeast has several anti-prion systems, acting in normal cells (without protein overexpression or deficiency). Some anti-prion proteins partially block prion formation (Ssb1,2p, ribosome-associated Hsp70s); others cure a large portion of prion variants that arise [Btn2p, Cur1p, Hsp104 (a disaggregase), Siw14p, and Upf1,2,3p, nonsense-mediated decay proteins], and others prevent prion-induced pathology (Sis1p, essential cytoplasmic Hsp40). Study of the anti-prion activity of Siw14p, a pyrophosphatase specific for 5-diphosphoinositol pentakisphosphate (5PP-IP5), led to the discovery that inositol polyphosphates, signal transduction molecules, are involved in [PSI+] prion propagation. Either inositol hexakisphosphate or 5PP-IP4 (or 5PP-IP5) can supply a function that is needed by nearly all [PSI+] variants. Because yeast prions are informative models for mammalian prion diseases and other amyloidoses, detailed examination of the anti-prion systems, some of which have close mammalian homologues, will be important for the development of therapeutic measures.


Asunto(s)
Inositol/metabolismo , Polifosfatos/metabolismo , Priones/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Glutatión Peroxidasa/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(6): E1184-E1193, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29358398

RESUMEN

The yeast prion [PSI+] is a self-propagating amyloid of Sup35p with a folded in-register parallel ß-sheet architecture. In a genetic screen for antiprion genes, using the yeast knockout collection, UPF1/NAM7 and UPF3, encoding nonsense-mediated mRNA decay (NMD) factors, were frequently detected. Almost all [PSI+] variants arising in the absence of Upf proteins were eliminated by restored normal levels of these proteins, and [PSI+] arises more frequently in upf mutants. Upf1p, complexed with Upf2p and Upf3p, is a multifunctional protein with helicase, ATP-binding, and RNA-binding activities promoting efficient translation termination and degradation of mRNAs with premature nonsense codons. We find that the curing ability of Upf proteins is uncorrelated with these previously reported functions but does depend on their interaction with Sup35p and formation of the Upf1p-Upf2p-Upf3p complex (i.e., the Upf complex). Indeed, Sup35p amyloid formation in vitro is inhibited by substoichiometric Upf1p. Inhibition of [PSI+] prion generation and propagation by Upf proteins may be due to the monomeric Upf proteins and the Upf complex competing with Sup35p amyloid fibers for available Sup35p monomers. Alternatively, the association of the Upf complex with amyloid filaments may block the addition of new monomers. Our results suggest that maintenance of normal protein-protein interactions prevents prion formation and can even reverse the process.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido/genética , Priones/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Codón sin Sentido , Regulación Fúngica de la Expresión Génica , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Priones/genética , Biosíntesis de Proteínas , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
20.
Curr Genet ; 64(3): 571-574, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29243174

RESUMEN

The [PSI+] prion is a folded in-register parallel ß-sheet amyloid (filamentous polymer) of Sup35p, a subunit of the translation termination factor. Our searches for anti-prion systems led to our finding that certain soluble inositol polyphosphates (IPs) are important for the propagation of the [PSI+] prion. The IPs affect a wide range of processes, including mRNA export, telomere length, phosphate and polyphosphate metabolism, energy regulation, transcription and translation. We found that 5-diphosphoinositol tetra(or penta)kisphosphate or inositol hexakisphosphate could support [PSI+] prion propagation, and 1-diphosphoinositol pentakisphosphate appears to inhibit the process.


Asunto(s)
Inositol/química , Polifosfatos/metabolismo , Priones/genética , Metabolismo Energético , Polifosfatos/química , Biosíntesis de Proteínas , ARN de Hongos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...