Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38774451

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Lymphoma, Mantle-Cell , SAM Domain and HD Domain-Containing Protein 1 , SOXC Transcription Factors , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Humans , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Animals , Mice , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Protein Binding , Cell Line, Tumor , Cytarabine/pharmacology
2.
JCI Insight ; 9(6)2024 Feb 15.
Article En | MEDLINE | ID: mdl-38358826

Neuroblastoma is an aggressive pediatric cancer with a high rate of metastasis to the BM. Despite intensive treatments including high-dose chemotherapy, the overall survival rate for children with metastatic neuroblastoma remains dismal. Understanding the cellular and molecular mechanisms of the metastatic tumor microenvironment is crucial for developing new therapies and improving clinical outcomes. Here, we used single-cell RNA-Seq to characterize immune and tumor cell alterations in neuroblastoma BM metastases by comparative analysis with patients without metastases. Our results reveal remodeling of the immune cell populations and reprogramming of gene expression profiles in the metastatic niche. In particular, within the BM metastatic niche, we observed the enrichment of immune cells, including tumor-associated neutrophils, macrophages, and exhausted T cells, as well as an increased number of Tregs and a decreased number of B cells. Furthermore, we highlighted cell communication between tumor cells and immune cell populations, and we identified prognostic markers in malignant cells that are associated with worse clinical outcomes in 3 independent neuroblastoma cohorts. Our results provide insight into the cellular, compositional, and transcriptional shifts underlying neuroblastoma BM metastases that contribute to the development of new therapeutic strategies.


Bone Marrow , Neuroblastoma , Humans , Child , Bone Marrow/pathology , Neuroblastoma/genetics , Single-Cell Analysis , Tumor Microenvironment
3.
J Endocr Soc ; 8(3): bvae009, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38328478

Context: Recent preclinical studies reported that the BCL-2 inhibitor venetoclax can impair bone growth. A strategy to prevent such a side effect of this promising anticancer drug is highly desired. Earlier in vitro and in vivo studies suggested that the mitochondrial peptide humanin has the potential to prevent drug-induced growth impairment. Objective: We hypothesized that co-treatment with the humanin analog HNG may prevent venetoclax-induced bone growth impairment. Methods: Ex vivo studies were performed in fetal rat metatarsal bones and human growth plate samples cultured for 12 and 2 days, respectively, while in vivo studies were performed in young neuroblastoma mice being treated daily for 14 days. The treatment groups included venetoclax, HNG, venetoclax plus HNG, or vehicle. Bone growth was continuously monitored and at the end point, histomorphometric and immunohistochemical analyses were performed in fixed tissues. Results: Venetoclax suppressed metatarsal bone growth and when combined with HNG, bone growth was rescued and all histological parameters affected by venetoclax monotherapy were normalized. Mechanistic studies showed that HNG downregulated the pro-apoptotic proteins Bax and p53 in cultured metatarsals and human growth plate tissues, respectively. The study in a neuroblastoma mouse model confirmed a growth-suppressive effect of venetoclax treatment. In this short-term in vivo study, no significant bone growth-rescuing effect could be verified when testing HNG at a single dose. We conclude that humanin dose-dependently protects ex vivo cultured metatarsal bones from venetoclax-induced bone growth impairment by restoring the growth plate microstructure.

4.
Blood ; 143(19): 1953-1964, 2024 May 09.
Article En | MEDLINE | ID: mdl-38237141

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Lymphoma, Mantle-Cell , SAM Domain and HD Domain-Containing Protein 1 , SOXC Transcription Factors , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Humans , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Animals , Mice , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Protein Binding , Cell Line, Tumor , Cytarabine/pharmacology
5.
Front Pharmacol ; 14: 1183720, 2023.
Article En | MEDLINE | ID: mdl-37731742

Neuroblastoma is the most common extracranial solid tumor in childhood and arises from neural crest cells of the developing sympathetic nervous system. Prostaglandin E2 (PGE2) has been identified as a key pro-inflammatory mediator of the tumor microenvironment (TME) that promotes neuroblastoma progression. We report that the interaction between the microRNA miR-574-5p and CUG-binding protein 1 (CUGBP1) induces the expression of microsomal prostaglandin E2 synthase 1 (mPGES-1) in neuroblastoma cells, which contributes to PGE2 biosynthesis. PGE2 in turn specifically induces the sorting of miR-574-5p into small extracellular vesicles (sEV) in neuroblastoma cell lines. sEV are one of the major players in intercellular communication in the TME. We found that sEV-derived miR-574-5p has a paracrine function in neuroblastoma. It acts as a direct Toll-like receptor 7/8 (TLR7/8) ligand and induces α-smooth muscle actin (α-SMA) expression in fibroblasts, contributing to fibroblast differentiation. This is particularly noteworthy as it has an opposite function to that in the TME of lung carcinoma, another PGE2 dependent tumor type. Here, sEV-derived miR-574-5p has an autokrine function that inhibits PGE2 biosynthesis in lung cancer cells. We report that the tetraspanin composition on the surface of sEV is associated with the function of sEV-derived miR-574-5p. This suggests that the vesicles do not only transport miRs, but also appear to influence their mode of action.

6.
Sci Rep ; 13(1): 8054, 2023 05 17.
Article En | MEDLINE | ID: mdl-37198212

Treatment-related skeletal complications are common in childhood cancer patients and survivors. Venetoclax is a BCL-2 inhibitor that has shown efficacy in hematological malignancies in adults and is being investigated in pediatric cancer clinical trials as a promising therapeutic modality. Venetoclax triggers cell death in cancer cells, but whether it exerts similar effects in normal bone cells, is unknown. Chondrogenic ATDC5 cells, E20 fetal rat metatarsal bones, and human growth plate biopsies were treated with different concentrations of venetoclax. Female NMRI nu/nu mice were treated with venetoclax or vehicle for 15 days. Mice were X-rayed at baseline and at the end of the experiment to assess longitudinal bone growth and body weight was monitored throughout the study. Histomorphometric and immunohistochemical analyses were performed to evaluate treatment effects on the growth plate cartilage. Venetoclax decreased the viability of chondrocytes and impaired the growth of ex vivo cultured metatarsals while reducing the height of the resting/proliferative zone and the hypertrophic cell size. When tested in vivo, venetoclax suppressed bone growth and reduced growth plate height. Our experimental data suggest that venetoclax directly targets growth plate chondrocytes suppressing bone growth and we, therefore, encourage careful monitoring of longitudinal bone growth if treating growing children with venetoclax.


Bone Development , Chondrocytes , Animals , Female , Mice , Rats , Cartilage/metabolism , Chondrocytes/metabolism , Growth Plate/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
7.
Front Oncol ; 12: 906194, 2022.
Article En | MEDLINE | ID: mdl-36147919

Platinum-based chemotherapies such as cisplatin are used as first-line treatment for the paediatric tumour neuroblastoma. Although the majority of neuroblastoma tumours respond to therapy, there is a high fraction of high-risk neuroblastoma patients that eventually relapse with increased resistance. Here, we show that one key determinant of cisplatin sensitivity is phosphorylation of the cyclin-dependent kinase inhibitor p21Cip1/Waf1. A panel of eight neuroblastoma cell lines and a TH-MYCN mouse model were investigated for the expression of p21Cip1/Waf1 using RT-qPCR, Western blot, and immunofluorescence. This was followed by investigation of sensitivity towards cisplatin and the p21Cip1/Waf1 inhibitor UC2288. Whereas the cell lines and the mouse model showed low levels of un-phosphorylated p21Cip1/Waf1, the phosphorylated p21Cip1/Waf1 (Thr145) was highly expressed, which in the cell lines correlated to cisplatin resistance. Furthermore, the neuroblastoma cell lines showed high sensitivity to UC2288, and combination treatment with cisplatin resulted in considerably decreased cell viability and delay in regrowth in the two most resistant cell lines, SK-N-DZ and BE(2)-C. Thus, targeting p21Cip1/Waf1 can offer new treatment strategies and subsequently lead to the design of more efficient combination treatments for high-risk neuroblastoma.

8.
Nat Commun ; 13(1): 1537, 2022 03 22.
Article En | MEDLINE | ID: mdl-35318302

Hyperactive Notch signalling is frequently observed in breast cancer and correlates with poor prognosis. However, relatively few mutations in the core Notch signalling pathway have been identified in breast cancer, suggesting that as yet unknown mechanisms increase Notch activity. Here we show that increased expression levels of GIT1 correlate with high relapse-free survival in oestrogen receptor-negative (ER(-)) breast cancer patients and that GIT1 mediates negative regulation of Notch. GIT1 knockdown in ER(-) breast tumour cells increased signalling downstream of Notch and activity of aldehyde dehydrogenase, a predictor of poor clinical outcome. GIT1 interacts with the Notch intracellular domain (ICD) and influences signalling by inhibiting the cytoplasm-to-nucleus transport of the Notch ICD. In xenograft experiments, overexpression of GIT1 in ER(-) cells prevented or reduced Notch-driven tumour formation. These results identify GIT1 as a modulator of Notch signalling and a guardian against breast cancer growth.


Breast Neoplasms , Adaptor Proteins, Signal Transducing/metabolism , Breast/pathology , Breast Neoplasms/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Female , Humans , Neoplasm Recurrence, Local , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction
9.
Life Sci ; 295: 120394, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35157910

AIMS: Medulloblastoma (MB) is one of the most common malignant central nervous system tumors of childhood. Despite intensive treatments that often leads to severe neurological sequelae, the risk for resistant relapses remains significant. In this study we have evaluated the effects of the ω3-long chain polyunsaturated fatty acids (ω3-LCPUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on MB cell lines and in a MB xenograft model. MAIN METHODS: Effects of ω3-LCPUFA treatment of MB cells were assessed using the following: WST-1 assay, cell death probes, clonogenic assay, ELISA and western blot. MB cells were implanted into nude mice and the mice were randomized to DHA, or a combination of DHA and EPA treatment, or to control group. Treatment effects in tumor tissues were evaluated with: LC-MS/MS, RNA-sequencing and immunohistochemistry, and tumors, erythrocytes and brain tissues were analyzed with gas chromatography. KEY FINDINGS: ω3-LCPUFA decreased prostaglandin E2 (PGE2) secretion from MB cells, and impaired MB cell viability and colony forming ability and increased apoptosis in a dose-dependent manner. DHA reduced tumor growth in vivo, and both PGE2 and prostacyclin were significantly decreased in tumor tissue from treated mice compared to control animals. All ω3-LCPUFA and dihomo-γ-linolenic acid increased in tumors from treated mice. RNA-sequencing revealed 10 downregulated genes in common among ω3-LCPUFA treated tumors. CRYAB was the most significantly altered gene and the downregulation was confirmed by immunohistochemistry. SIGNIFICANCE: Our findings suggest that addition of DHA and EPA to the standard MB treatment regimen might be a novel approach to target inflammation in the tumor microenvironment.


Fatty Acids, Omega-3/pharmacology , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Animals , Apoptosis/drug effects , Carcinogenesis , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, Liquid/methods , Dinoprostone/metabolism , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Fatty Acids/metabolism , Fatty Acids, Omega-3/metabolism , Female , Humans , Mice , Mice, Nude , Prostaglandins/metabolism , Tandem Mass Spectrometry/methods , Tumor Microenvironment , Xenograft Model Antitumor Assays/methods , alpha-Crystallin B Chain/drug effects , alpha-Crystallin B Chain/metabolism
10.
Cancer Res Commun ; 2(3): 182-201, 2022 03.
Article En | MEDLINE | ID: mdl-36874405

Deregulated expression of MYC family oncogenes occurs frequently in human cancer and is often associated with aggressive disease and poor prognosis. While MYC is a highly warranted target, it has been considered "undruggable," and no specific anti-MYC drugs are available in the clinic. We recently identified molecules named MYCMIs that inhibit the interaction between MYC and its essential partner MAX. Here we show that one of these molecules, MYCMI-7, efficiently and selectively inhibits MYC:MAX and MYCN:MAX interactions in cells, binds directly to recombinant MYC, and reduces MYC-driven transcription. In addition, MYCMI-7 induces degradation of MYC and MYCN proteins. MYCMI-7 potently induces growth arrest/apoptosis in tumor cells in a MYC/MYCN-dependent manner and downregulates the MYC pathway on a global level as determined by RNA sequencing. Sensitivity to MYCMI-7 correlates with MYC expression in a panel of 60 tumor cell lines and MYCMI-7 shows high efficacy toward a collection of patient-derived primary glioblastoma and acute myeloid leukemia (AML) ex vivo cultures. Importantly, a variety of normal cells become G1 arrested without signs of apoptosis upon MYCMI-7 treatment. Finally, in mouse tumor models of MYC-driven AML, breast cancer, and MYCN-amplified neuroblastoma, treatment with MYCMI-7 downregulates MYC/MYCN, inhibits tumor growth, and prolongs survival through apoptosis with few side effects. In conclusion, MYCMI-7 is a potent and selective MYC inhibitor that is highly relevant for the development into clinically useful drugs for the treatment of MYC-driven cancer. Significance: Our findings demonstrate that the small-molecule MYCMI-7 binds MYC and inhibits interaction between MYC and MAX, thereby hampering MYC-driven tumor cell growth in culture and in vivo while sparing normal cells.


Neuroblastoma , Animals , Mice , Humans , N-Myc Proto-Oncogene Protein/genetics , Cell Line, Tumor , Neuroblastoma/drug therapy , Cell Proliferation , Cell Cycle
11.
Cancers (Basel) ; 13(23)2021 Nov 30.
Article En | MEDLINE | ID: mdl-34885154

Childhood medulloblastoma and high-risk neuroblastoma frequently present with segmental gain of chromosome 17q corresponding to aggressive tumors and poor patient prognosis. Located within the 17q-gained chromosomal segments is PPM1D at chromosome 17q23.2. PPM1D encodes a serine/threonine phosphatase, WIP1, that is a negative regulator of p53 activity as well as key proteins involved in cell cycle control, DNA repair and apoptosis. Here, we show that the level of PPM1D expression correlates with chromosome 17q gain in medulloblastoma and neuroblastoma cells, and both medulloblastoma and neuroblastoma cells are highly dependent on PPM1D expression for survival. Comparison of different inhibitors of WIP1 showed that SL-176 was the most potent compound inhibiting medulloblastoma and neuroblastoma growth and had similar or more potent effects on cell survival than the MDM2 inhibitor Nutlin-3 or the p53 activator RITA. SL-176 monotherapy significantly suppressed the growth of established medulloblastoma and neuroblastoma xenografts in nude mice. These results suggest that the development of clinically applicable compounds inhibiting the activity of WIP1 is of importance since PPM1D activating mutations, genetic gain or amplifications and/or overexpression of WIP1 are frequently detected in several different cancers.

12.
Cell Death Dis ; 12(10): 914, 2021 10 06.
Article En | MEDLINE | ID: mdl-34615851

Malignant cells display an increased sensitivity towards drugs that reduce the function of the ubiquitin-proteasome system (UPS), which is the primary proteolytic system for destruction of aberrant proteins. Here, we report on the discovery of the bioactivatable compound CBK77, which causes an irreversible collapse of the UPS, accompanied by a general accumulation of ubiquitylated proteins and caspase-dependent cell death. CBK77 caused accumulation of ubiquitin-dependent, but not ubiquitin-independent, reporter substrates of the UPS, suggesting a selective effect on ubiquitin-dependent proteolysis. In a genome-wide CRISPR interference screen, we identified the redox enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) as a critical mediator of CBK77 activity, and further demonstrated its role as the compound bioactivator. Through affinity-based proteomics, we found that CBK77 covalently interacts with ubiquitin. In vitro experiments showed that CBK77-treated ubiquitin conjugates were less susceptible to disassembly by deubiquitylating enzymes. In vivo efficacy of CBK77 was validated by reduced growth of NQO1-proficient human adenocarcinoma cells in nude mice treated with CBK77. This first-in-class NQO1-activatable UPS inhibitor suggests that it may be possible to exploit the intracellular environment in malignant cells for leveraging the impact of compounds that impair the UPS.


NAD(P)H Dehydrogenase (Quinone)/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/antagonists & inhibitors , Animals , Caspases/metabolism , Cell Death/drug effects , Cell Line, Tumor , Deubiquitinating Enzymes/metabolism , Female , High-Throughput Screening Assays , Humans , Mice, Nude , Phenotype , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Recombinant Proteins/metabolism , Small Molecule Libraries/pharmacology , Substrate Specificity/drug effects , Ubiquitin/metabolism , Xenograft Model Antitumor Assays
13.
Int J Oncol ; 58(2): 211-225, 2021 02.
Article En | MEDLINE | ID: mdl-33491755

Neuroblastoma (NB) is a heterogenous disease with treatment varying from observation for low­risk tumors, to extensive therapy with chemotherapy, surgery, radiotherapy, and autologous bone­marrow­transplantation and immunotherapy. However, a high frequency of primary­chemo­refractory disease and recurrences urgently require novel treatment strategies. The present study therefore investigated the anti­NB efficacy of the recently FDA­approved phosphoinositide 3­kinase (PI3K) and fibroblast growth factor receptor (FGFR) inhibitors, alpelisib (BYL719) and erdafitinib (JNJ­42756493), alone and in combination with or without cisplatin, vincristine, or doxorubicin on 5 NB cell lines. For this purpose, the NB cell lines, SK­N­AS, SK­N­BE(2)­C, SK­N­DZ, SK­N­FI and SK­N­SH (where SK­N­DZ had a deletion of PIK3C2G and none had FGFR mutations according to the Cancer Program's Dependency Map, although some were chemoresistant), were tested for their sensitivity to FDA­approved inhibitors alone or in combination, or together with cytostatic drugs by viability, cytotoxicity, apoptosis and proliferation assays. The results revealed that monotherapy with alpelisib or erdafitinib resulted in a dose­dependent inhibition of cell viability and proliferation. Notably, the combined use of PI3K and FGFR inhibitors resulted in an enhanced efficacy, while their combined use with the canonical cytotoxic agents, cisplatin, vincristine and doxorubicin, resulted in variable synergistic, additive and antagonistic effects. Collectively, the present study provides pre­clinical evidence that PI3K and FGFR inhibitors exhibit promising anti­NB activity. The data presented herein also indicate that the incorporation of these inhibitors into chemotherapeutic regimens requires careful consideration and further research in order to obtain a beneficial efficacy. Nevertheless, the addition of PI3K and FGFR inhibitors to the treatment arsenal might reduce the occurrence of refractory and relapsing disease in NB without FGFR and PI3K mutations.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cytostatic Agents/pharmacology , Neuroblastoma/drug therapy , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Child , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cytostatic Agents/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm , Drug Synergism , Humans , Neuroblastoma/pathology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Quinoxalines/pharmacology , Quinoxalines/therapeutic use , Receptors, Fibroblast Growth Factor/metabolism , Thiazoles/pharmacology , Thiazoles/therapeutic use , Vincristine/pharmacology , Vincristine/therapeutic use
14.
Anticancer Res ; 40(1): 53-66, 2020 Jan.
Article En | MEDLINE | ID: mdl-31892552

BACKGROUND/AIM: Medulloblastoma (MB) accounts for ~20% of pediatric malignant central nervous system tumors. Treatment strategies, including surgery, radiation therapy and/or chemotherapy, are effective, but recurrence and metastasis frequently occur. Therefore, novel therapies are required. Herein, the effects of fibroblast growth factor receptor (FGFR) and phosphoinositide 3-kinase (PI3K) inhibitors on MB cells lines were evaluated. MATERIALS AND METHODS: MB cell lines (UW228-3, DAOY, Med8a, D425, D283) were tested for sensitivity to FGFR (AZD4547) and PI3K (BEZ235 and BYL719) inhibitors by viability, cytotoxicity, apoptosis, and proliferation assays. RESULTS: Single treatments with FGFR and PI3K inhibitors decreased viability and proliferation in a dose-dependent pattern in most cell lines. Combinination of the two type of drugs, increased sensitivity, especially of the most resistant cell line UW228-3. CONCLUSION: Combination treatments with FGFR and PI3K inhibitors were superior to single treatments with FGFR and PI3K inhibitors, especially with BEZ235, for MB cell lines.


Medulloblastoma/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Medulloblastoma/pathology , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays
15.
Oncol Lett ; 18(6): 6249-6260, 2019 Dec.
Article En | MEDLINE | ID: mdl-31788102

Human papillomavirus positive (HPV+) tonsillar and base of tongue squamous cell carcinoma (TSCC/BOTSCC) have better outcomes than corresponding HPV- negative (HPV-) cancer cases. Our previous study demonstrated that fibroblast growth factor receptor 3 (FGFR3) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit a (PIK3CA) are often mutated in HPV+ cancer. To investigate whether targeted therapy is an option for TSCC/BOTSCC, two HPV+ and one HPV- TSCC/BOTSCC cell lines were tested for their sensitivity towards FGFR and PI3K inhibitors. The HPV+ cell lines UM-SCC-47 and UPCI-SCC-154, and the HPV- cell line UT-SSC-60A were tested by competitive allele-specific TaqMan-PCR for presence/absence of frequently occurring FGFR3 and PIK3CA mutations. All cells were then treated with FGFR inhibitor AZD4547 and PI3K inhibitors BEZ235 and BKM120 alone, or with AZD4547 and BEZ235 in combination. Viability was analyzed using a WST-1 assay, cytotoxicity tested by a CellTox Green cytotoxicity assay, apoptosis analyzed by a Caspase Glo 3/7 assay and proliferation examined with the xCELLigence system. HPV+ UM-SCC-47 and UPCI-SCC-154 cells, and HPV- UT-SSC-60A cells, did not exhibit any common FGFR3 or PIK3CA mutations, but were all sensitive to FGFR inhibitor AZD4547 and PI3K inhibitors BEZ235 and BKM120. Notably, HPV+ UPCI-SCC-154 cells were more sensitive than the other two cell lines. Furthermore, when AZD4547 and BEZ235 treatment was combined in HPV+ UPCI-SCC-154 and HPV- UT-SSC-60A cells, potentiated combination effects were observed. HPV+ UM-SCC-47 and UPCI-SCC-154 cells, and HPV- UT-SSC-60A cells had no common FGFR3 or PIK3CA mutations, but were sensitive to FGFR inhibitor AZD4547, and PI3K inhibitors BEZ235 and BKM120. Furthermore, the latter two cell lines were particularly sensitive to combinations of AZD4547 and BEZ235.

16.
Int J Oncol ; 55(6): 1372-1384, 2019 Dec.
Article En | MEDLINE | ID: mdl-31638167

Fibroblast growth factor receptor (FGFR)3 and phosphatidylinositol­4,5­bisphosphate 3­kinase, catalytic subunit alpha (PIK3CA) mutations are found in various types of cancer, such as urinary bladder cancer, human papillomavirus­positive tonsillar and base of the tongue squamous cell carcinoma, breast cancer and some childhood sarcomas. Several drugs can target these genes, some of which have been used for the treatment of urinary bladder cancer. Much less is known about childhood cancer. For this reason, the present study investigated the presence of such mutations in neuroblastomas (NBs) and tested NB cell lines for sensitivity to FGFR and phosphoinositide 3­kinase (PI3K) inhibitors. In total, 29 NBs were examined for the presence of the three most common FGFR3 and PIK3CA mutations using a competitive allele­specific TaqMan PCR (CAST­PCR). Furthermore, the SK­N­AS, SK­N­BE(2)­C, SK­N­DZ, SK­N­FI and SK­N­SH NB cell lines (where SK­N­DZ had a deletion of PIK3C2G, none had FGFR mutations according to the Cancer Program's Dependency Map, but some were chemoresistant), were tested for sensitivity to FGFR (AZD4547) and PI3K (BEZ235 and BKM120) inhibitors by viability, cytotoxicity, apoptosis and proliferation assays. CAST­PCR detected one FGFR3 mutation in 1/29 NBs. Following treatment with FGFR and PI3K inhibitors, a decrease in viability and proliferation was observed in the majority, but not all, the cell lines. Following combination treatment with both drugs, the sensitivity of all cell lines was increased. On the whole, the findings of this study demonstrate that FGFR3 and PIK3CA mutations are uncommon in patients with NB. However, certain NB cell lines are rather sensitive to both FGFR and PI3K inhibitors alone, and even more so when the different drugs are used in combination.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Class I Phosphatidylinositol 3-Kinases/genetics , Neuroblastoma/genetics , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Receptor, Fibroblast Growth Factor, Type 3/genetics , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Benzamides/pharmacology , Benzamides/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Child , Child, Preschool , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , DNA Mutational Analysis , Drug Resistance, Neoplasm/genetics , Female , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Infant , Infant, Newborn , Male , Morpholines/pharmacology , Morpholines/therapeutic use , Mutation , Neuroblastoma/drug therapy , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Piperazines/pharmacology , Piperazines/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
17.
Front Mol Neurosci ; 12: 9, 2019.
Article En | MEDLINE | ID: mdl-30760980

Neuroblastoma is a neural crest derived malignancy of the peripheral nervous system and is the most common and deadliest tumor of infancy. It is characterized by clinical heterogeneity with a disease spectrum ranging from spontaneous regression without any medical intervention to treatment resistant tumors with metastatic spread and poor patient survival. The events that lead to the development of neuroblastoma from the neural crest have not been fully elucidated. Here we discuss factors and processes within the neural crest that when dysregulated have the potential to be initiators or drivers of neuroblastoma development. A more precise biological understanding of neuroblastoma causes and cell of origin is highly warranted. This will give valuable information for the development of medicines that specifically target molecules within neuroblastoma cells and also give hint about the mechanisms behind treatment resistance that is frequently seen in neuroblastoma.

18.
Cancers (Basel) ; 11(2)2019 Feb 10.
Article En | MEDLINE | ID: mdl-30744170

Neuroblastoma is a malignancy arising from the developing sympathetic nervous system and the most common and deadly cancer of infancy. New therapies are needed to improve the prognosis for high-risk patients and to reduce toxicity and late effects. Spleen tyrosine kinase (SYK) has previously been identified as a promising drug target in various inflammatory diseases and cancers but has so far not been extensively studied as a potential therapeutic target in neuroblastoma. In this study, we observed elevated SYK gene expression in neuroblastoma compared to neural crest and benign neurofibroma. While SYK protein was detected in the majority of examined neuroblastoma tissues it was less frequently observed in neuroblastoma cell lines. Depletion of SYK by siRNA and the use of small molecule SYK inhibitors significantly reduced the cell viability of neuroblastoma cell lines expressing SYK protein. Moreover, SYK inhibition decreased ERK1/2 and Akt phosphorylation. The SYK inhibitor BAY 613606 enhanced the effect of different chemotherapeutic drugs. Transient expression of a constitutive active SYK variant increased the viability of neuroblastoma cells independent of endogenous SYK levels. Collectively, our findings suggest that targeting SYK in combination with conventional chemotherapy should be further evaluated as a treatment option in neuroblastoma.

19.
Cancers (Basel) ; 12(1)2019 Dec 26.
Article En | MEDLINE | ID: mdl-31888022

Medulloblastoma is one of the most common malignant brain tumor types in children, with an overall survival of 70%. Mortality is associated with metastatic relapsed tumors. Rho-associated kinases (ROCKs), important for epithelial-mesenchymal transition (EMT) and proper nervous system development, have previously been identified as a promising drug target to inhibit cancer growth and metastatic spread. Here, we show that ROCKs are expressed in medulloblastoma, with higher ROCK2 mRNA expression in metastatic compared to non-metastatic tumors. By evaluating three ROCK inhibitors in a panel of medulloblastoma cell lines we demonstrated that medulloblastoma cells were sensitive for pharmacological ROCK inhibition. The specific ROCK inhibitor RKI-1447 inhibited the tumorigenicity in medulloblastoma cells as well as impeded cell migration and invasion. Differential gene expression analysis suggested that ROCK inhibition was associated with the downregulation of signaling pathways important in proliferation and metastasis e.g., TNFα via NFκß, TGFß, and EMT. Expression of key proteins in these pathways such as RHOA, RHOB, JUN, and vimentin was downregulated in ROCK inhibited cells. Finally, we showed that ROCK inhibition by RKI-1447 suppressed medulloblastoma growth and proliferation in vivo. Collectively, our results suggest that ROCK inhibition presents a potential new therapeutic option in medulloblastoma, especially for children with metastatic disease.

20.
Pharmacol Res ; 131: 164-176, 2018 05.
Article En | MEDLINE | ID: mdl-29466695

Neuroblastoma is the most common extracranical tumor of childhood and the most deadly tumor of infancy. It is characterized by early age onset and high frequencies of metastatic disease but also the capacity to spontaneously regress. Despite intensive therapy, the survival for patients with high-risk neuroblastoma and those with recurrent or relapsed disease is low. Hence, there is an urgent need to develop new therapies for these patient groups. The molecular pathogenesis based on high-throughput omics technologies of neuroblastoma is beginning to be resolved which have given the opportunity to develop personalized therapies for high-risk patients. Here we discuss the potential of developing targeted therapies against aberrantly expressed molecules detected in sub-populations of neuroblastoma patients and how these selected targets can be drugged in order to overcome treatment resistance, improve survival and quality of life for these patients and also the possibilities to transfer preclinical research into clinical testing.


Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy/methods , Neuroblastoma/drug therapy , Peripheral Nervous System Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Child , Drug Discovery/methods , Drug Resistance, Neoplasm , Drugs, Investigational/pharmacology , Drugs, Investigational/therapeutic use , Humans , Neuroblastoma/metabolism , Neuroblastoma/pathology , Peripheral Nervous System Neoplasms/metabolism , Peripheral Nervous System Neoplasms/pathology , Quality of Life , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/pathology
...