Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1247542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964967

RESUMEN

Background: CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods: We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results: CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion: Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.


Asunto(s)
Imidazoles , Oximas , Prolina/análogos & derivados , Tiocarbamatos , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Fosforilación , Proteínas Proto-Oncogénicas B-raf/genética , Línea Celular Tumoral , Neoplasias de la Tiroides/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasa 4 Dependiente de la Ciclina
2.
EBioMedicine ; 48: 191-202, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31648983

RESUMEN

BACKGROUND: Malignant Pleural Mesothelioma (MPM) is an aggressive disease related to asbestos exposure, with no effective therapeutic options. METHODS: We undertook unsupervised analyses of RNA-sequencing data of 284 MPMs, with no assumption of discreteness. Using immunohistochemistry, we performed an orthogonal validation on a subset of 103 samples and a biological replication in an independent series of 77 samples. FINDINGS: A continuum of molecular profiles explained the prognosis of the disease better than any discrete model. The immune and vascular pathways were the major sources of molecular variation, with strong differences in the expression of immune checkpoints and pro-angiogenic genes; the extrema of this continuum had specific molecular profiles: a "hot" bad-prognosis profile, with high lymphocyte infiltration and high expression of immune checkpoints and pro-angiogenic genes; a "cold" bad-prognosis profile, with low lymphocyte infiltration and high expression of pro-angiogenic genes; and a "VEGFR2+/VISTA+" better-prognosis profile, with high expression of immune checkpoint VISTA and pro-angiogenic gene VEGFR2. We validated the gene expression levels at the protein level for a subset of five selected genes belonging to the immune and vascular pathways (CD8A, PDL1, VEGFR3, VEGFR2, and VISTA), in the validation series, and replicated the molecular profiles as well as their prognostic value in the replication series. INTERPRETATION: The prognosis of MPM is best explained by a continuous model, which extremes show specific expression patterns of genes involved in angiogenesis and immune response.


Asunto(s)
Susceptibilidad a Enfermedades , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/etiología , Mesotelioma/diagnóstico , Mesotelioma/etiología , Neovascularización Patológica/inmunología , Neoplasias Pleurales/diagnóstico , Neoplasias Pleurales/etiología , Microambiente Tumoral/inmunología , Biomarcadores de Tumor , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/patología , Masculino , Mesotelioma/patología , Mesotelioma Maligno , Neoplasias Pleurales/patología , Transcriptoma
3.
Mol Cancer Ther ; 18(6): 1137-1148, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30926633

RESUMEN

Besides the detection of somatic receptor tyrosine kinases (RTK) mutations in tumor samples, the current challenge is to interpret their biological relevance to give patients effective targeted treatment. By high-throughput sequencing of the 58 RTK exons of healthy tissues, colorectal tumors, and hepatic metastases from 30 patients, 38 different somatic mutations in RTKs were identified. The mutations in the kinase domains and present in both tumors and metastases were reconstituted to perform an unbiased functional study. Among eight variants found in seven RTKs (EPHA4-Met726Ile, EPHB2-Val621Ile, ERBB4-Thr731Met, FGFR4-Ala585Thr, VEGFR3-Leu1014Phe, KIT-Pro875Leu, TRKB-Leu584Val, and NTRK2-Lys618Thr), none displayed significantly increased tyrosine kinase activity. Consistently, none of them induced transformation of NIH3T3 fibroblasts. On the contrary, two RTK variants (FGFR4-Ala585Thr and FLT4-Leu1014Phe) caused drastic inhibition of their kinase activity. These findings indicate that these RTK variants are not suitable targets and highlight the importance of functional studies to validate RTK mutations as potential therapeutic targets.


Asunto(s)
Neoplasias Colorrectales/genética , Mutación , Proteínas Tirosina Quinasas Receptoras/genética , Adulto , Anciano , Animales , Secuencia de Bases , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/secundario , Neoplasias Colorrectales/cirugía , Femenino , Genoma Humano/genética , Células HCT116 , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Persona de Mediana Edad , Células 3T3 NIH , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...