Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38473787

The current trend in microbiological research aimed at limiting the development of biofilms of multidrug-resistant microorganisms is increasingly towards the search for possible synergistic effects between various compounds. This work presents a combination of a naturally occurring compound, ß-aescin, newly synthesized alkylamidobetaines (AABs) with a general structure-CnTMDAB, and antifungal drugs. The research we conducted consists of several stages. The first stage concerns determining biological activity (antifungal) against selected multidrug-resistant strains of Candida glabrata (C. glabrata) with the highest ability to form biofilms. The second stage of this study determined the activity of ß-aescin combinations with antifungal compounds and alkylamidobetaines. In the next stage of this study, the ability to eradicate a biofilm on the polystyrene surface of the combination of ß-aescin with alkylamidobetaines was examined. It has been shown that the combination of ß-aescin and alkylamidobetaine can firmly remove biofilms and reduce their viability. The last stage of this research was to determine the safety regarding the cytotoxicity of both ß-aescin and alkylamidobetaines. Previous studies on the fibroblast cell line have shown that C9 alkylamidobetaine can be safely used as a component of anti-biofilm compounds. This research increases the level of knowledge about the practical possibilities of using anti-biofilm compounds in combined therapies against C. glabrata.


Antifungal Agents , Candida glabrata , Antifungal Agents/pharmacology , Escin/pharmacology , Candida albicans , Microbial Sensitivity Tests , Biofilms
2.
Molecules ; 29(2)2024 Jan 16.
Article En | MEDLINE | ID: mdl-38257349

Buds of poplar trees (Populus species) are often covered with sticky, usually polyphenol-rich, exudates. Moreover, accessible data showed that some Populus bud extracts may be excellent antibacterial agents, especially against Gram-positive bacteria. Due to the fragmentary nature of the data found, we conducted a systematic screening study. The antimicrobial activity of two extract types (semi-polar-ethanolic and polar-ethanolic-water (50/50; V/V)) from 27 bud samples of different poplar taxons were compared. Antimicrobial assays were performed against Gram-positive (five strains) and Gram-negative (six strains) bacteria as well as fungi (three strains) and covered the determination of minimal inhibitory, bactericidal, and fungicidal concentrations. The composition of extracts was later investigated by ultra-high-performance liquid chromatography coupled with ultraviolet detection (UHPLC-DAD) and with electrospray-quadrupole-time-of-flight tandem mass spectrometry (UHPLC-ESI-qTOF-MS). As a result, most of the extracts exhibited good (MIC ≤ 62.5 µg/mL) or moderate (62.5 < MIC ≤ 500 µg/mL) activity against Gram-positives and Helicobacter pylori, as well as fungi. The most active were ethanolic extracts from P. trichocarpa, P. trichocarpa clone 'Robusta', and P. tacamahaca × P. trichocarpa. The strongest activity was observed for P. tacamahaca × P. trichocarpa. Antibacterial activity was supposedly connected with the abundant presence of flavonoids (pinobanksin, pinobanksin 3-acetate, chrysin, pinocembrin, galangin, isosakuranetin dihydrochalcone, pinocembrin dihydrochalcone, and 2',6'-dihydroxy-4'-methoxydihydrochalcone), hydroxycinnamic acids monoesters (p-methoxycinnamic acid cinnamyl ester, caffeic acid phenethylate and different isomers of prenyl esters), and some minor components (balsacones).


Chalcones , Populus , Anti-Bacterial Agents/pharmacology , Chromatography, High Pressure Liquid , Esters
3.
Sci Rep ; 13(1): 20351, 2023 11 21.
Article En | MEDLINE | ID: mdl-37990133

The antimicrobial properties of garlic are widely known, and numerous studies confirmed its ability to inhibit the growth of Mycobacterium tuberculosis. In this work, we explored the molecular mechanism of action of sulphides present in garlic essential oil against mycobacteria. The targeted transcriptomics and untargeted LC-MS metabolomics were applied to study dose- and time-dependent metabolic changes in bacterial cells under the influence of stressing agent. Expression profiles of genes coding stress-responsive sigma factors regulatory network and metabolic observations proved that sulphides from garlic essential oil are an efficient and specific agent affecting glycerophospholipids levels and their distribution within the cell envelope. Additionally, sulphides induced the Dimroth rearrangement of 1-Tuberculosinyladenosine to N6-tuberculosinyladenosine in mycobacterial cells as a possible neutralization mechanism protecting the cell from a basic nucleophilic environment. Sulphides affected cell envelope lipids and formation of N6-tuberculosinyladenosine in M. tuberculosis.


Garlic , Mycobacterium tuberculosis , Oils, Volatile , Oils, Volatile/metabolism , Sulfides/metabolism
4.
Int J Mol Sci ; 24(17)2023 Aug 31.
Article En | MEDLINE | ID: mdl-37686356

Silver phosphate and its composites have been attracting extensive interest as photocatalysts potentially effective against pathogenic microorganisms. The purpose of the present study was to investigate the mechanism of bactericidal action on cells of opportunistic pathogens. The Ag3PO4/P25 (AGP/P25) and Ag3PO4/HA (HA/AGP) powders were prepared via a co-precipitation method. Thereafter, their antimicrobial properties against Enterococcus faecalis, Staphylococcus epidermidis, and Staphylococcus aureus (clinical and reference strains) were analyzed in the dark and after exposure to visible light (VIS). The mechanism leading to cell death was investigated by the leakage of metabolites and potassium ions, oxidative stress, and ROS production. Morphological changes of the bacterial cells were visualized by transmission electron microscopy (TEM) and scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (SEM EDS) analysis. It has been shown that Ag3PO4-based composites are highly effective agents that can eradicate 100% of bacterial populations during the 60 min photocatalytic inactivation. Their action is mainly due to the production of hydroxyl radicals and photogenerated holes which lead to oxidative stress in cells. The strong affinity to the bacterial cell wall, as well as the well-known biocidal properties of silver itself, increase undoubtedly the antimicrobial potential of the Ag3PO4-based composites.


Cell Wall , Enterococcus faecalis , Cell Death , Hydroxyl Radical , Light
5.
Int J Mol Sci ; 24(10)2023 May 12.
Article En | MEDLINE | ID: mdl-37240050

Anxiety is one of the most common central nervous system disorders, affecting at least one-quarter of the worldwide population. The medications routinely used for the treatment of anxiety (mainly benzodiazepines) are a cause of addiction and are characterized by many undesirable side effects. Thus, there is an important and urgent need for screening and finding novel drug candidates that can be used in the prevention or treatment of anxiety. Simple coumarins usually do not show side effects, or these effects are much lower than in the case of synthetic drugs acting on the central nervous system (CNS). This study aimed to evaluate the anxiolytic activity of three simple coumarins from Peucedanum luxurians Tamamsch, namely officinalin, stenocarpin isobutyrate, and officinalin isobutyrate, in a 5 dpf larval zebrafish model. Moreover, the influence of the tested coumarins on the expression of genes involved in the neural activity (c-fos, bdnf) or dopaminergic (th1), serotoninergic (htr1Aa, htr1b, htr2b), GABA-ergic (gabarapa, gabarapb), enkephalinergic (penka, penkb), and galaninergic (galn) neurotransmission was assessed by quantitative PCR. All tested coumarins showed significant anxiolytic activity, with officinalin as the most potent compound. The presence of a free hydroxyl group at position C-7 and the lack of methoxy moiety at position C-8 might be key structural features responsible for the observed effects. In addition, officinalin and its isobutyrate upregulated the expression of genes involved in neurotransmission and decreased the expression of genes connected with neural activity. Therefore, the coumarins from P. luxurians might be considered as promising drug candidates for the therapy of anxiety and related disorders.


Anti-Anxiety Agents , Animals , Anti-Anxiety Agents/pharmacology , Zebrafish/genetics , Fruit/chemistry , Isobutyrates/analysis , Anxiety/drug therapy , Anxiety/metabolism , Coumarins/chemistry , Gene Expression
6.
Molecules ; 28(7)2023 Mar 27.
Article En | MEDLINE | ID: mdl-37049747

In the current paper, we present the results of Kazakh propolis investigations. Due to limited data about propolis from this country, research was focused mainly on phytochemical analysis and evaluation of propolis antimicrobial activity. uHPLC-DAD (ultra-high-pressure-liquid chromatography coupled with diode array detection, UV/VIS) and uHPLC-MS/MS (ultra-high-pressure-liquid chromatography coupled with tandem mass spectrometry) were used to phytochemical characteristics while antimicrobial activity was evaluated in the serial dilution method (MIC, minimal inhibitory concentration, and MBC/MFC, minimal bactericidal/fungicidal concentration measurements). In the study, Kazakh propolis exhibited a strong presence of markers characteristic of poplar-type propolis-flavonoid aglycones (pinocembrin, galangin, pinobanksin and pinobanskin-3-O-acetate) and hydroxycinnamic acid monoesters (mainly caffeic acid phenethyl ester and different isomers of caffeic acid prenyl ester). The second plant precursor of Kazakh propolis was aspen-poplar with 2-acetyl-1,3-di-p-coumaroyl glycerol as the main marker. Regarding antimicrobial activity, Kazakh propolis revealed stronger activity against reference Gram-positive strains (MIC from 31.3 to above 4000 mg/L) and yeasts (MIC from 62.5 to 1000 mg/L) than against reference Gram-negative strains (MIC ≥ 4000 mg/L). Moreover, Kazakh propolis showed good anti-Helicobacter pylori activity (MIC and MBC were from 31.3 to 62.5 mg/L). All propolis samples were also tested for H. pylori urease inhibitory activity (IC50, half-maximal inhibitory concentration, ranged from 440.73 to 11,177.24 µg/mL). In summary Kazakh propolis are potent antimicrobial agents and may be considered as a medicament in the future.


Anti-Infective Agents , Ascomycota , Propolis , Propolis/pharmacology , Propolis/chemistry , Tandem Mass Spectrometry , Kazakhstan , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Phytochemicals/pharmacology , Microbial Sensitivity Tests
7.
Molecules ; 28(3)2023 Feb 01.
Article En | MEDLINE | ID: mdl-36771040

Helicobacter pylori (H. pylori) is considered the most common bacterial pathogen colonizing stomach mucosa of almost half the world's population and is associated with various gastrointestinal diseases (from digestive problems and ulcers to gastric cancer). A lack of new drugs and a growing number of H. pylori antibiotic-resistant strains is a serious therapeutic problem.As a mixture of natural compounds, propolis has antimicrobial activity based on high concentrations of bioactive polyphenols (mainly flavonoids and phenolic acid derivates). The chemical composition of tested Georgian propolis is characterized by the presence of flavonoids aglycones, and phenolic acid monoesters, e.g., pinobanksin-5-methyl ether, pinobanksin, chrysin, pinocembrin, galangin, pinobanksin-3-O-acetate, pinostrobin and pinobanksin-3-O-butanoate, or isobutanoate and methoxycinnamic acid cinnamyl ester. The anti-H. pylori activity of 70% ethanol water extracts of 10 Georgian propolis samples was evaluated in vitro by MIC (minimal inhibitory concentration) against the reference strain (H. pylori ATCC 43504) and 10 clinical strains with different antibiotic-resistance patterns. The strongest anti-Helicobacter activity (MIC and MBC = 31.3 µg/mL) was observed for propolis from Orgora, Ota, and Vardzia and two from Khaheti. Lower levels of activity (MIC = 62.5 µg/mL) were found in propolis obtained from Qvakhreli and Pasanauri, while the lowest effect was observed for Norio and Mestia (MIC = 125.0 µg/mL). However, despite differences in MIC, all evaluated samples exhibited bactericidal activity. We selected the most active propolis samples for assessment of urease inhibition property. Enzyme activity was inhibited by propolis extracts, with IC50 ranging from 4.01 to 1484.8 µg/mL. Principal component analysis (PCA) and hierarchical fuzzy clustering (dendrograms) coupled with matrix correlation analysis exhibited that the strongest anti-Helicobacter activity was connected with black poplar origin and high flavonoid content of propolis. Samples with lower activity contained higher presence of aspen markers and/or dominance of non-flavonoid polyphenols over flavonoids. In summary, Georgian propolis can be regarded as a source bioactive compounds that can be used as adjuvant in therapy of H. pylori infection.


Helicobacter pylori , Propolis , Propolis/pharmacology , Propolis/chemistry , Hydroxybenzoates/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ethanol/chemistry , Microbial Sensitivity Tests
8.
Molecules ; 27(22)2022 Nov 09.
Article En | MEDLINE | ID: mdl-36431810

Propolis (bee glue) is a resinous substance produced by different species of bees i.a. from available plant resins, balsams, and exudates. It is characterized by significant biological activity (e.g., antimicrobial and antioxidant) and phytochemical diversity related to the available plant sources in specific geographical regions. The available scientific literature on propolis is quite extensive; however, there are only a few reports about propolis originating from Georgia. Therefore, our research was focused on the characterization of Georgian propolis in terms of phytochemical composition and antimicrobial/antioxidant activity. Performed research included UHPLC-DAD-MS/MS phytochemical profiling, determination of total phenolic and flavonoid content, antiradical and antioxidant activity (DPPH and FRAP assays) as well as antibacterial activity of propolis extracts obtained using 70% ethanol (70EE). Georgian propolis extracts exhibited strong activity against Gram-positive bacteria (22 mm-disc assay/64 µg/mL-MIC for S. aureus, sample from Imereti) and weaker against Gram-negative strains as well as strong antioxidant properties (up to 117.71 ± 1.04 mgGAE/g in DPPH assay, up to 16.83 ± 1.02 mmol Fe2+/g in FRAP assay for samples from Orgora and Qvakhreli, respectively). The phytochemical profile of Georgian propolis was characterized by the presence of flavonoids, free phenolic acids, and their esters. In most of the samples, flavonoids were the main chemical group (52 compounds), represented mainly by 3-O-pinobanksin acetate, pinocembrin, chrysin, galangin, and pinobanksin. The primary plant precursor of the Georgian bee glue is black poplar (Populus nigra L.) while the secondary is aspen poplar (P. tremula L.).


Anti-Infective Agents , Ascomycota , Populus , Propolis , Propolis/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Tandem Mass Spectrometry , Staphylococcus aureus , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Phytochemicals/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Populus/chemistry
9.
Front Microbiol ; 13: 929476, 2022.
Article En | MEDLINE | ID: mdl-35814697

Propolis is a natural product proved to be efficient against Mycobacterium tuberculosis. Although it is produced by bees, its active alcoholic-aqueous fraction contains plant-derived molecules. To gain some insight into its mechanism of antimycobacterial activity, we studied the metabolic changes in bacterial cells treated with extract of Trigona sp. propolis from Nepal. The detailed metabolomic and transcriptomic analysis performed in this study indicated target points in bacterial cells under propolis extract influence. The profile of lipids forming the outer and middle layer of the mycobacterial cell envelope was not changed by propolis treatment, however, fluctuations in the profiles of amphipathic glycerophospholipids were observed. The enrichment analysis revealed bacterial metabolic pathways affected by Trigona sp. propolis treatment. The early metabolic response involved much more pathways than observed after 48 h of incubation, however, the highest enrichment ratio was observed after 48 h, indicating the long-lasting influence of propolis. The early bacterial response was related to the increased demand for energy and upregulation of molecules involved in the formation of the cell membrane. The transcriptomic analysis confirmed that bacteria also suffered from oxidative stress, which was more pronounced on the second day of exposure. This was the first attempt to explain the action of Nepalese propolis extract against mycobacteria.

10.
J Clin Med ; 11(15)2022 Jul 23.
Article En | MEDLINE | ID: mdl-35893381

The study aimed to evaluate the safety and pharmacological activity Amaryllidaceae, Lycopodiaceae alkaloids and coumarins obtained from Narcissus triandrus L., Lycopodium clavatum L., Lycopodium annotinum L., Huperzia selago L. and Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. In the in vivo studies. The influence of the tested compounds on the central nervous system of rats was assessed in behavioral tests (locomotor activity, Y-maze, passive avoidance). In order to investigate the mechanisms of action, biochemical determinations were performed (AChE activity, BChE activity, IL-1ß, IL-6 concentration). In order to assess safety, the concentrations of AST, ALT, GGT and urea and creatinine were determined. The results of the conducted studies indicate a high safety profile of the tested compounds. Behavioral tests showed that they significantly improved rodent memory in a passive avoidance test. The results of biochemical studies showed that by reducing the activity of AChE and BChE and lowering the concentration of IL-1ß and IL-6, the coumarin-rich Angelica dahurica extract shows the most promising potential for future therapeutic AD strategies.

11.
Pathogens ; 11(2)2022 01 31.
Article En | MEDLINE | ID: mdl-35215134

There is a noticeable interest in alternative therapies where the outcome is the eradication of the Gram-negative bacterium, Helicobacter pylori (H. pylori), for the purpose of treating many stomach diseases (chronic gastritis and peptic ulcers) and preventing stomach cancer. It is especially urgent because the mentioned pathogen infects over 50% of the world's population. Recent studies have shown the potential of natural products, such as medicinal plant and bee products, on the inhibition of H. pylori growth. Propolis is such a bee product, with known antimicrobial activities. The main scope of the study is the determination of the antimicrobial activity of ethanolic extracts from 11 propolis samples (mostly from Poland, Ukraine, Kazakhstan, and Greece) against H. pylori, as well as selected bacterial and yeast species. The most effective against H. pylori was the propolis from Ukraine, with an MIC = 0.02 mg/mL while the rest of samples (except one) had an MIC = 0.03 mg/mL. Moreover, significant antimicrobial activity against Gram+ bacteria (with an MIC of 0.02-2.50 mg/mL) and three yeasts (with an MIC of 0.04-0.63 mg/mL) was also observed. A phytochemical analysis (polyphenolic profile) of the propolis samples, by ultra-high-performance liquid chromatography-diode array detector-mass spectrometry (UPLC-DAD-MS), was performed. An evaluation of the impact of the propolis components on antimicrobial activity, consisting of statistical analyses (principal component analysis (PCA) and hierarchical fuzzy clustering), was then performed. It was observed that the chemical composition characteristics of the poplar propolis correlated with higher antibacterial activity, while that of the poplar and aspen propolis correlated with weaker antibacterial activity. To summarize the activity in vitro, all tested propolis samples indicate that they can be regarded as useful and potent factors in antimicrobial therapies, especially against H. pylori.

12.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article En | MEDLINE | ID: mdl-35163457

The main aim of our research was to investigate antiadhesive and antibiofilm properties of nanocrystalline apatites doped and co-doped with noble metal ions (Ag+, Au+, and Pd2+) against selected drug-resistant strains of Enterococcus faecalis and Staphylococcus aureus. The materials with the structure of apatite (hydroxyapatite, nHAp; hydroxy-chlor-apatites, OH-Cl-Ap) containing 1 mol% and 2 mol% of dopants and co-dopants were successfully obtained by the wet chemistry method. The majority of them contained an additional phase of metallic nanoparticles, in particular, AuNPs and PdNPs, which was confirmed by the XRPD, FTIR, UV-Vis, and SEM-EDS techniques. Extensive microbiological tests of the nanoapatites were carried out determining their MIC, MBC value, and FICI. The antiadhesive and antibiofilm properties of the tested nanoapatites were determined in detail with the use of fluorescence microscopy and computer image analysis. The results showed that almost all tested nanoapatites strongly inhibit adhesion and biofilm production of the tested bacterial strains. Biomaterials have not shown any significant cytotoxic effect on fibroblasts and even increased their survival when co-incubated with bacterial biofilms. Performed analyses confirmed that the nanoapatites doped and co-doped with noble metal ions are safe and excellent antiadhesive and antibiofilm biomaterials with potential use in the future in medical sectors.


Apatites/pharmacology , Enterococcus faecalis/physiology , Gold/chemistry , Methicillin-Resistant Staphylococcus aureus/physiology , Palladium/chemistry , Silver/chemistry , Animals , Apatites/chemistry , BALB 3T3 Cells , Bacterial Adhesion/drug effects , Biofilms/drug effects , Cell Survival/drug effects , Drug Resistance, Bacterial/drug effects , Enterococcus faecalis/drug effects , Metal Nanoparticles/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , Particle Size
13.
Molecules ; 28(1)2022 Dec 21.
Article En | MEDLINE | ID: mdl-36615251

Tyrosinase is a key enzyme in the melanogenesis pathway. Melanin, the product of this process, is the main pigment of the human skin and a major protection factor against harmful ultraviolet radiation (UVR). Increased melanin synthesis due to tyrosinase hyperactivity can cause hyperpigmentation disorders, which in consequence causes freckles, age spots, melasma, or postinflammatory hyperpigmentation. Tyrosinase overproduction and hyperactivity are triggered by the ageing processes and skin inflammation as a result of oxidative stress. Therefore, the control of tyrosinase activity is the main goal of the prevention and treatment of pigmentation disorders. Natural products, especially propolis, according to their phytochemical profile abundant in polyphenols, is a very rich resource of new potential tyrosinase inhibitors. Therefore, this study focused on the assessment of the tyrosinase inhibitory potential of six extracts obtained from the European propolis samples of various origins. The results showed the potent inhibitory activity of all tested propolis extracts towards commercially available mushroom tyrosinase. The four most active propolis extracts showed inhibitory activity in the range of 86.66-93.25%. Apart from the evaluation of the tyrosinase inhibition, the performed research included UHPLC-DAD-MS/MS (ultra high performance liquid chromatography coupled with diode array detection and tandem mass spectrometry) phytochemical profiling as well as antioxidant activity assessment using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2"-azino-bis(3-ethylbenzothiazoline-6-sulfuric acid (ABTS) radical scavenging tests. Moreover, statistical analysis was used to correlate the tyrosinase inhibitory and antioxidant activities of propolis extracts with their phytochemical composition. To summarise, the results of our research showed that tested propolis extracts could be used for skin cosmeceutical and medical applications.


Antioxidants , Enzyme Inhibitors , Hyperpigmentation , Monophenol Monooxygenase , Plant Extracts , Propolis , Humans , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Hyperpigmentation/enzymology , Melanins/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Phytochemicals , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Propolis/chemistry , Tandem Mass Spectrometry , Ultraviolet Rays
14.
Molecules ; 26(21)2021 Oct 22.
Article En | MEDLINE | ID: mdl-34770788

In view of the abundant evidence that Lycopodiaceae alkaloids, including the well-known huperzine A (HupA), are among the potent acetylcholinesterase (AChE) inhibitors, an attempt was made to search for new compounds responsible for this property. For this purpose, three plant species belonging to the Lycopodiaceae family, commonly found in the Euro-Asia region, were subjected to the isolation of bioactive compounds, their identification and subsequent evaluation of their anticholinesterase and cytotoxic activities. Methanolic extracts of two Lycopodium and one Hupezia species were obtained via optimized pressurized liquid extraction (PLE) and then pre-purified using innovative gradient vacuum liquid chromatography (gVLC). For the first time, three sorbents of different porosity packed in polypropylene cartridges and mobile phase systems of different polarity were used to elute the target compounds. This technique proved to be a rapid tool for the obtainment of alkaloid fractions and allowed one to select the appropriate process conditions to yield potent AChE inhibitors in each of the species studied. More than 100 collected fractions were analyzed via HPLC/ESI-QTOF-MS, which enabled one to detect more than 50 compounds, including several new ones previously unreported. Some of them were present in high purity fractions (60-90% of the established purity). TLC bioautography assays proved that the analyzed species are rich sources of AChE inhibitors, but H. selago showed the highest anti-AChE activity. Additionally, the modified silanized silica gel sorbent used allowed one to isolate L. clavatum alkaloids more efficiently using an aqueous reversed-phase solvent system. Furthermore, the tested extracts from the three plant extracts were found to be safe, as they did not exhibit cytotoxicity to skin fibroblasts.


Alkaloids/pharmacology , Cholinesterase Inhibitors/pharmacology , Lycopodiaceae/chemistry , Plant Extracts/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Cell Survival/drug effects , Chemical Fractionation , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Chromatography, High Pressure Liquid , Fibroblasts/drug effects , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
Life (Basel) ; 11(11)2021 Oct 21.
Article En | MEDLINE | ID: mdl-34832993

Depression is one of the most common mental disorders in the world that negatively affects the daily functioning of patients. Numerous studies are currently being conducted to examine the antidepressant potential of innovative synthetic compounds and herbal substances. Yacon, Smallantchus sonchifolius, belongs to plants with numerous health-beneficial properties. Yacon-based products are regarded as a functional food. In our study, we attempted to check whether administration of Yacon tuber extract would have an antidepressant effect in the forced swim test (FST) in mice and whether its intake could influence the activity of conventional antidepressant drugs with different mechanisms of action, i.e., imipramine hydrochloride, fluoxetine hydrochloride, and reboxetine mesylate. The spontaneous locomotor activity of the tested mice was also investigated to eliminate any false-positive results. We demonstrated that an intragastric administration of the Yacon tuber extract at a dose of 100 mg/kg induced the antidepressant-like behavior in the FST in mice and that a combined administration of the sub-effective doses of the Yacon extract (50 mg/kg) with imipramine hydrochloride (7.5 mg/kg), fluoxetine hydrochloride (20 mg/kg), or reboxetine mesylate (5 mg/kg) significantly reduced the immobility time of animals in this behavioral test. The obtained results were not affected by the increased locomotor activity of the tested subjects. In conclusion, our findings suggest that Yacon tuber extract is promising as an alternative mood-improving product since it possesses an antidepressant potential and it can acts synergistically with conventional antidepressant drugs.

16.
Molecules ; 26(6)2021 Mar 15.
Article En | MEDLINE | ID: mdl-33804083

Alkaloids of the Lycopodiaceae family are of great interest to researchers due to their numerous properties and wide applications in medicine. They play a very important role mainly due to their potent antioxidant, antidepressant effects and a reversible ability to inhibit acetylcholinesterase (AChE) enzyme activity. This property is of immense importance due to the growing problem of an increasing number of patients with neurodegenerative diseases in developed countries and a lack of effective and efficient treatment for them. Numerous studies have shown that Lycopodiaceae alkaloids are a rich source of AChE inhibitors. In the obtaining of new therapeutic phytochemicals from plant material, the extraction process and its efficiency is crucial. Therefore, the aim of this work was to optimize the conditions of modern PLE to obtain bioactive alkaloids from two Lycopodium species: L. clavatum L. and L. annotinum L. Five different solvents of different polarity were used for prepared plant extracts in order to compare the alkaloid content in and thereby effectiveness of the entire extraction. PLE parameters were used based on multiple studies conducted that gave the highest alkaloids recovery. Crude extracts were purified using solid-phase extraction (SPE) on Oasis HLB cartridge and examined by HPLC/ESI-QTOF-MS of the highly abundant alkaloids. To the best of our knowledge, this is the first time such high recoveries have been obtained for known Lycopodiaceae alkaloids. The best extraction results of alkaloid-lycopodine were detected in the dichloromethane extract from L. clavatum, where the yield exceeded 45%. The high recovery of annotinine above 40% presented in L. annotinum was noticed in dichloromethane and ethyl acetate extracts. Moreover, chromatograms were obtained with all isolated alkaloids and the best separation and quality of the bands in methanolic extracts. Interestingly, no alkaloid amounts were detected in cyclohexane extracts belonging to the non-polar solvent. These results could be helpful for understanding and optimizing the best conditions for isolating potent AChE inhibitors.


Alkaloids/chemistry , Lycopodiaceae/chemistry , Lycopodium/chemistry , Plant Extracts/chemistry , Acetylcholinesterase/chemistry , Antioxidants/chemistry , Cholinesterase Inhibitors/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Solid Phase Extraction/methods
17.
Int J Mol Sci ; 22(4)2021 Feb 12.
Article En | MEDLINE | ID: mdl-33673195

Different types of anxiety disorders have become the number one mental health issue in developed countries. The search for new, safer and effective drug-like molecules among naturally derived substances faces two difficulties: an efficient method of isolation compounds with a high-purity and high-throughput animal model for activity assay. Thus, the aim of the present study was to isolate by liquid-liquid chromatography high-purity rare coumarins from the fruits of Seseli devenyense Simonk. and evaluate their anxiolytic effect (defined as reversed thimotaxis) using a 5-days post-fertilization (dpf) Danio rerio larvae model. Liquid-liquid chromatography enabled the isolation of one simple hydroxycoumarin (devenyol) and four pyranocoumarins (cis-khellactone, d-laserpitin, isolaserpitin and octanoyllomatin). The anxiolytic effect was defined as a decrease in the time spent in the boundaries of the living space (also described as reversed thigmotaxis). Our results show that all isolated courmarins exerted a significant influence on the anxiety behavior (anxiolytic activity) in the zebrafish larvae model. According to our knowledge, this is the first report of anxiolytic activity of pyranocoumarins and devenyol.


Anti-Anxiety Agents , Coumarins , Embryo, Nonmammalian/embryology , Embryonic Development/drug effects , Fruit/chemistry , Plants/chemistry , Zebrafish/embryology , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/isolation & purification , Anti-Anxiety Agents/pharmacology , Chromatography, Liquid , Coumarins/chemistry , Coumarins/isolation & purification , Coumarins/pharmacology
18.
Biomolecules ; 11(1)2021 01 06.
Article En | MEDLINE | ID: mdl-33419208

Propolis is a bee product with known medical properties, including antioxidant activity. The scope of the study is profiling 19 different Eurasian propolis samples (mostly from Russia and Kazakhstan, Kyrgyzstan, Poland, Ukraine, and Slovakia). Profiles of propolises were investigated by ultra-high-performance liquid chromatography-diode array detector-mass spectrometry (UPLC-DAD-MS). Classical antioxidant properties, which are based on electron donation mechanism, were assessed by DPPH, ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) assays. Total phenolic and flavonoid contents were also evaluated by colorimetric tests. Most of the samples exhibited significant content of polyphenols (from 30.28 to 145.24 mg GAE/g of propolis) and flavonoids (from 10.45 to 82.71 mg GAE/g of propolis). Most of the propolis samples exhibited potent antiradical (DPPH test-from 8.83 to 64.47 mg GAE/g of propolis) and reducing activity (FRAP test-from 0.08 to 1.17 mmol Fe2+/g of propolis). Based on the occurrence of marker compounds, propolis samples were classified as poplar, aspen-birch, aspen-poplar, and aspen-birch-poplar type. Main markers present in propolis of poplar (e.g., chrysin, pinocembrin, galangin, and 3-O-acetyl-pinobanksin), birch (ermanin and acacetin) and aspen (2-acetyl-1,3-di-p-coumaroylglycerol) origin were used. DPPH, FRAP, and ORAC tests results were correlated with flavonoids, total polyphenols, or the polyphenols other than flavonoids content. In term of activity, poplar propolis type was variable, while aspen-birch-poplar type usually exhibited high DPPH and FRAP activity.


Antioxidants/analysis , Phenols/analysis , Plants/chemistry , Propolis/chemistry , Biphenyl Compounds/chemistry , Free Radical Scavengers/chemistry , Picrates/chemistry
19.
Metabolites ; 10(10)2020 Oct 04.
Article En | MEDLINE | ID: mdl-33020380

Bioassay-guided isolation of bioactive compound is a modern and efficient technique in metabolites screening. It may shorten the total time of the entire process and reduce some costs of it. The aim of this paper was to fractionate and isolate alkaloids by developing an innovative vacuum liquid chromatography method for a species of Narcissus c.v. 'Hawera' rarely investigated so far and establishing the inhibitory activity of acetylcholinesterase (AChE). The studies consisted of the extraction of plant material by modern pressurized liquid extraction (PLE), followed by the isolation of alkaloidal fractions. For this purpose, the pioneering gradient vacuum liquid chromatography (gVLC) technique was employed by using two sorbents in various proportions packed in polypropylene cartridges for the first time. This step was performed in order to pre-clean the samples but also to establish the best combination of sorbents which permits obtaining potentially strong AChE inhibitors. The collected fractions were examined by HPLC/ESI-QTOF-MS in order to compare which combination of sorbents would allow us to obtain the highest concentration of alkaloids. The combination of these techniques confirmed the presence of the alkaloids and enabled the development of a modern method for the fractionation and isolation of the compounds with strong anti-AChE activity.

20.
Biomed Pharmacother ; 129: 110435, 2020 Sep.
Article En | MEDLINE | ID: mdl-32593967

In this study, we evaluated antimicrobial activity, antimicrobial activity in combination with antibiotics, and chemical composition of Nepalese propolis 70% ethanolic extracts. Propolis originated from two genera of bees - Apis mellifera L. and Trigona sp. HPLC-DAD-MS/MS analyses revealed that the composition of both extracts was almost the same and the main components were flavonoid aglycones (mainly neoflavonoids, isoflavonoids) and pterocarpans. The highest antibacterial activity (disc diffusion test) was observed against Helicobacter pylori, Staphylococcus aureus and Shigella flexneri. Antibiotics exhibited synergism with Apis mellifera L. and Trigona sp. propolis against S. aureus and the strongest effect was observed for the combination with amikacin and tetracycline. Moreover, Nepalase propolis inhibited filamentation of C. albicans and caused oxidative stress by production of the superoxide anion radical (O2-) and a lower concentration of the hydroxyl radical (OH). Propolis extracts are potent antibacterial agents and may be used in combination with antibiotics.


Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bees , Candida albicans/drug effects , Helicobacter pylori/drug effects , Propolis/pharmacology , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/isolation & purification , Candida albicans/growth & development , Candida albicans/metabolism , Drug Synergism , Helicobacter pylori/growth & development , Microbial Sensitivity Tests , Nepal , Oxidative Stress/drug effects , Propolis/chemistry , Staphylococcus aureus/growth & development
...