Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047060

RESUMEN

Pelvic organ prolapse (POP) represents a major health care burden in women, but its underlying pathophysiological mechanisms have not been elucidated. We first used a case-control design to perform an exome chip study in 526 women with POP and 960 control women to identify single nucleotide variants (SNVs) associated with the disease. We then integrated the functional interactions between the POP candidate proteins derived from the exome chip study and other POP candidate molecules into a molecular landscape. We found significant associations between POP and SNVs in 54 genes. The proteins encoded by 26 of these genes fit into the molecular landscape, together with 43 other POP candidate molecules. The POP landscape is located in and around epithelial cells and fibroblasts of the urogenital tract and harbors four interacting biological processes-epithelial-mesenchymal transition, immune response, modulation of the extracellular matrix, and fibroblast function-that are regulated by sex hormones and TGFB1. Our findings were corroborated by enrichment analyses of differential gene expression data from an independent POP cohort. Lastly, based on the landscape and using vaginal fibroblasts from women with POP, we predicted and showed that metformin alters gene expression in these fibroblasts in a beneficial direction. In conclusion, our integrated molecular landscape of POP provides insights into the biological processes underlying the disease and clues towards novel treatments.


Asunto(s)
Prolapso de Órgano Pélvico , Femenino , Humanos , Prolapso de Órgano Pélvico/genética , Prolapso de Órgano Pélvico/metabolismo , Vagina/metabolismo , Causalidad
2.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674940

RESUMEN

Tourette's disorder (TD) is a highly heritable childhood-onset neurodevelopmental disorder and is caused by a complex interplay of multiple genetic and environmental factors. Yet, the molecular mechanisms underlying the disorder remain largely elusive. In this study, we used the available omics data to compile a list of TD candidate genes, and we subsequently conducted tissue/cell type specificity and functional enrichment analyses of this list. Using genomic data, we also investigated genetic sharing between TD and blood and cerebrospinal fluid (CSF) metabolite levels. Lastly, we built a molecular landscape of TD through integrating the results from these analyses with an extensive literature search to identify the interactions between the TD candidate genes/proteins and metabolites. We found evidence for an enriched expression of the TD candidate genes in four brain regions and the pituitary. The functional enrichment analyses implicated two pathways ('cAMP-mediated signaling' and 'Endocannabinoid Neuronal Synapse Pathway') and multiple biological functions related to brain development and synaptic transmission in TD etiology. Furthermore, we found genetic sharing between TD and the blood and CSF levels of 39 metabolites. The landscape of TD not only provides insights into the (altered) molecular processes that underlie the disease but, through the identification of potential drug targets (such as FLT3, NAALAD2, CX3CL1-CX3CR1, OPRM1, and HRH2), it also yields clues for developing novel TD treatments.


Asunto(s)
Trastorno Obsesivo Compulsivo , Síndrome de Tourette , Humanos , Niño , Síndrome de Tourette/genética , Trastorno Obsesivo Compulsivo/genética , Encéfalo , Escala de Evaluación de la Conducta
3.
Prog Neurobiol ; 217: 102316, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35843356

RESUMEN

The RNA binding protein ELAVL4/HuD regulates the translation and splicing of multiple Alzheimer's disease (AD) candidate genes. We generated ELAVL4 knockout (KO) human induced pluripotent stem cell-derived neurons to study the effect that ELAVL4 has on AD-related cellular phenotypes. ELAVL4 KO significantly increased the levels of specific APP isoforms and intracellular phosphorylated tau, molecular changes that are related to the pathological hallmarks of AD. Overexpression of ELAVL4 in wild-type neurons and rescue experiments in ELAVL4 KO cells showed opposite effects and also led to a reduction of the extracellular amyloid-beta (Aß)42/40 ratio. All these observations were made in familial AD (fAD) and fAD-corrected neurons. To gain insight into the molecular cascades involved in neuronal ELAVL4 signaling, we conducted pathway and upstream regulator analyses of transcriptomic and proteomic data from the generated neurons. These analyses revealed that ELAVL4 affects multiple biological pathways linked to AD, including those involved in synaptic function, as well as gene expression downstream of APP and tau signaling. The analyses also suggest that ELAVL4 expression is regulated by insulin receptor-FOXO1 signaling in neurons. Taken together, ELAVL4 expression ameliorates AD-related molecular changes in neurons and affects multiple synaptic pathways, making it a promising target for novel drug development.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína 4 Similar a ELAV/metabolismo , Neuronas/metabolismo , Proteómica , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/farmacología , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Int J Mol Sci ; 23(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35328504

RESUMEN

The blood transcriptome was examined in relation to disease severity in type I myotonic dystrophy (DM1) patients who participated in the Observational Prolonged Trial In DM1 to Improve QoL- Standards (OPTIMISTIC) study. This sought to (a) ascertain if transcriptome changes were associated with increasing disease severity, as measured by the muscle impairment rating scale (MIRS), and (b) establish if these changes in mRNA expression and associated biological pathways were also observed in the Dystrophia Myotonica Biomarker Discovery Initiative (DMBDI) microarray dataset in blood (with equivalent MIRS/DMPK repeat length). The changes in gene expression were compared using a number of complementary pathways, gene ontology and upstream regulator analyses, which suggested that symptom severity in DM1 was linked to transcriptomic alterations in innate and adaptive immunity associated with muscle-wasting. Future studies should explore the role of immunity in DM1 in more detail to assess its relevance to DM1.


Asunto(s)
Distrofia Miotónica , Perfilación de la Expresión Génica , Humanos , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Calidad de Vida , Índice de Severidad de la Enfermedad , Transcriptoma
5.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328824

RESUMEN

Stress urinary incontinence (SUI) is a common and burdensome condition. Because of the large knowledge gap around the molecular processes involved in its pathophysiology, the aim of this review was to provide a systematic overview of genetic variants, gene and protein expression changes related to SUI in human and animal studies. On 5 January 2021, a systematic search was performed in Pubmed, Embase, Web of Science, and the Cochrane library. The screening process and quality assessment were performed in duplicate, using predefined inclusion criteria and different quality assessment tools for human and animal studies respectively. The extracted data were grouped in themes per outcome measure, according to their functions in cellular processes, and synthesized in a narrative review. Finally, 107 studies were included, of which 35 used animal models (rats and mice). Resulting from the most examined processes, the evidence suggests that SUI is associated with altered extracellular matrix metabolism, estrogen receptors, oxidative stress, apoptosis, inflammation, neurodegenerative processes, and muscle cell differentiation and contractility. Due to heterogeneity in the studies (e.g., in examined tissues), the precise contribution of the associated genes and proteins in relation to SUI pathophysiology remained unclear. Future research should focus on possible contributors to these alterations.


Asunto(s)
Incontinencia Urinaria de Esfuerzo , Animales , Humanos , Ratones , Ratas , Incontinencia Urinaria de Esfuerzo/genética
6.
Transl Psychiatry ; 10(1): 121, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341337

RESUMEN

Obsessive-compulsive symptoms (OCS) in the population have been linked to obsessive-compulsive disorder (OCD) in genetic and epidemiological studies. Insulin signaling has been implicated in OCD. We extend previous work by assessing genetic overlap between OCD, population-based OCS, and central nervous system (CNS) and peripheral insulin signaling. We conducted genome-wide association studies (GWASs) in the population-based Philadelphia Neurodevelopmental Cohort (PNC, 650 children and adolescents) of the total OCS score and six OCS factors from an exploratory factor analysis of 22 questions. Subsequently, we performed polygenic risk score (PRS)-based analysis to assess shared genetic etiologies between clinical OCD (using GWAS data from the Psychiatric Genomics Consortium), the total OCS score and OCS factors. We then performed gene-set analyses with a set of OCD-linked genes centered around CNS insulin-regulated synaptic function and PRS-based analyses for five peripheral insulin signaling-related traits. For validation purposes, we explored data from the independent Spit for Science population cohort (5,047 children and adolescents). In the PNC, we found a significant shared genetic etiology between OCD and 'guilty taboo thoughts'. In the Spit for Science cohort, we additionally observed genetic sharing between 'symmetry/counting/ordering' and 'contamination/cleaning'. The CNS insulin-linked gene-set also associated with 'symmetry/counting/ordering' in the PNC. Further, we identified genetic sharing between peripheral insulin signaling-related traits: type 2 diabetes with 'aggressive taboo thoughts', and levels of fasting insulin and 2 h glucose with OCD. In conclusion, OCD, OCS in the population and insulin-related traits share genetic risk factors, indicating a common etiological mechanism underlying somatic and psychiatric disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Trastorno Obsesivo Compulsivo , Adolescente , Niño , Estudios de Cohortes , Comorbilidad , Estudio de Asociación del Genoma Completo , Humanos , Insulina , Trastorno Obsesivo Compulsivo/epidemiología , Trastorno Obsesivo Compulsivo/genética , Escalas de Valoración Psiquiátrica
7.
Front Neurol ; 10: 1229, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849810

RESUMEN

Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease characterized by multi-system involvement. Affected organ system includes skeletal muscle, heart, gastro-intestinal system and the brain. In this review, we evaluate the evidence for alterations in insulin signaling and their relation to clinical DM1 features. We start by summarizing the molecular pathophysiology of DM1. Next, an overview of normal insulin signaling physiology is given, and evidence for alterations herein in DM1 is presented. Clinically, evidence for involvement of insulin signaling pathways in DM1 is based on the increased incidence of insulin resistance seen in clinical practice and recent trial evidence of beneficial effects of metformin on muscle function. Indirectly, further support may be derived from certain CNS derived symptoms characteristic of DM1, such as obsessive-compulsive behavior features, for which links with altered insulin signaling has been demonstrated in other diseases. At the basic scientific level, several pathophysiological mechanisms that operate in DM1 may compromise normal insulin signaling physiology. The evidence presented here reflects the importance of insulin signaling in relation to clinical features of DM1 and justifies further basic scientific and clinical, therapeutically oriented research.

8.
Mol Neurobiol ; 56(7): 5111-5121, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30484112

RESUMEN

Chronic administration of L-DOPA, the first-line treatment of dystonic symptoms in childhood or in Parkinson's disease, often leads to the development of abnormal involuntary movements (AIMs), which represent an important clinical problem. Although it is known that Riluzole attenuates L-DOPA-induced AIMs, the molecular mechanisms underlying this effect are not understood. Therefore, we studied the behavior and performed RNA sequencing of the striatum in three groups of rats that all received a unilateral lesion with 6-hydroxydopamine in their medial forebrain bundle, followed by the administration of saline, L-DOPA, or L-DOPA combined with Riluzole. First, we provide evidence that Riluzole attenuates AIMs in this rat model. Subsequently, analysis of the transcriptomics data revealed that Riluzole is predicted to reduce the activity of CREB1, a transcription factor that regulates the expression of multiple proteins that interact in a molecular landscape involved in apoptosis. Although this mechanism underlying the beneficial effect of Riluzole on AIMs needs to be confirmed, it provides clues towards novel or existing compounds for the treatment of AIMs that modulate the activity of CREB1 and, hence, its downstream targets.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Discinesia Inducida por Medicamentos/prevención & control , Levodopa/toxicidad , Riluzol/uso terapéutico , Animales , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Masculino , Oxidopamina/toxicidad , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Riluzol/farmacología
9.
Sci Rep ; 8(1): 10188, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976948

RESUMEN

Increased glucocorticoid concentrations have been shown to favor resilience towards autoimmune phenomena. Here, we addressed whether experimentally induced elevations in circulating glucocorticoids mitigate the abnormalities exhibited by an experimental model of Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus (PANDAS). This is a pathogenic hypothesis linking repeated exposures to Group-A-beta-hemolytic streptococcus (GAS), autoantibodies targeting selected brain nuclei and neurobehavioral abnormalities. To persistently elevate glucocorticoid concentrations, we supplemented lactating SJL/J mice with corticosterone (CORT; 80 mg/L) in the drinking water. Starting in adolescence (postnatal day 28), developing offspring were exposed to four injections - at bi-weekly intervals - of a GAS homogenate and tested for behavioral, immunological, neurochemical and molecular alterations. GAS mice showed increased perseverative behavior, impaired sensorimotor gating, reduced reactivity to a serotonergic agonist and inflammatory infiltrates in the anterior diencephalon. Neonatal CORT persistently increased circulating glucocorticoids concentrations and counteracted these alterations. Additionally, neonatal CORT increased peripheral and CNS concentrations of the anti-inflammatory cytokine IL-9. Further, upstream regulator analysis of differentially expressed genes in the striatum showed that the regulatory effect of estradiol is inhibited in GAS-treated mice and activated in GAS-treated mice exposed to CORT. These data support the hypothesis that elevations in glucocorticoids may promote central immunomodulatory processes.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Cuerpo Estriado/inmunología , Corticosterona/inmunología , Trastorno Obsesivo Compulsivo/inmunología , Infecciones Estreptocócicas/inmunología , Estrés Psicológico/inmunología , Animales , Animales Recién Nacidos , Enfermedades Autoinmunes/sangre , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/microbiología , Técnicas de Observación Conductual , Conducta Animal , Cuerpo Estriado/metabolismo , Corticosterona/administración & dosificación , Corticosterona/sangre , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Interleucina-9/inmunología , Interleucina-9/metabolismo , Lactancia , Masculino , Ratones , Ratones Endogámicos , Trastorno Obsesivo Compulsivo/sangre , Trastorno Obsesivo Compulsivo/diagnóstico , Trastorno Obsesivo Compulsivo/microbiología , Infecciones Estreptocócicas/sangre , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Streptococcus/patogenicidad , Estrés Psicológico/sangre
10.
Front Neurosci ; 10: 384, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27601976

RESUMEN

Gilles de la Tourette Syndrome (GTS) is characterized by the presence of multiple motor and phonic tics with a fluctuating course of intensity, frequency, and severity. Up to 90% of patients with GTS present with comorbid conditions, most commonly attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD), thus providing an excellent model for the exploration of shared etiology across disorders. TS-EUROTRAIN (FP7-PEOPLE-2012-ITN, Grant Agr.No. 316978) is a Marie Curie Initial Training Network (http://ts-eurotrain.eu) that aims to elucidate the complex etiology of the onset and clinical course of GTS, investigate the neurobiological underpinnings of GTS and related disorders, translate research findings into clinical applications, and establish a pan-European infrastructure for the study of GTS. This includes the challenges of (i) assembling a large genetic database for the evaluation of the genetic architecture with high statistical power; (ii) exploring the role of gene-environment interactions including the effects of epigenetic phenomena; (iii) employing endophenotype-based approaches to understand the shared etiology between GTS, OCD, and ADHD; (iv) establishing a developmental animal model for GTS; (v) gaining new insights into the neurobiological mechanisms of GTS via cross-sectional and longitudinal neuroimaging studies; and (vi) partaking in outreach activities including the dissemination of scientific knowledge about GTS to the public. Fifteen partners from academia and industry and 12 PhD candidates pursue the project. Here, we aim to share the design of an interdisciplinary project, showcasing the potential of large-scale collaborative efforts in the field of GTS. Our ultimate aims are to elucidate the complex etiology and neurobiological underpinnings of GTS, translate research findings into clinical applications, and establish Pan-European infrastructure for the study of GTS and associated disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...